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ABSTRACT

Essays in Statistical Decision Theory of Treatment Choice

Aleksey Tetenov

I study the problem of choice between two treatments for a population of

observationally identical individuals based on statistical evidence about average

treatment e¤ects that does not reveal the best treatment with certainty. I approach the

problem from the perspective of statistical decision theory, derive treatment rules that

minimize maximum regret and contrast them with inference and decision making

methods of classical statistics.

In Chapter 1, the choice is between a status quo treatment with a known outcome

distribution and an innovation whose outcomes are observed only in a randomized

experiment. I introduce criteria that asymmetrically treat Type I regret (from adopting

an inferior innovation) and Type II regret (from rejecting a superior innovation). I

derive exact �nite sample solutions for experiments with normal, Bernoulli, or bounded

distributions of individual outcomes and discuss approaches for other sampling

distributions. For normal outcomes, asymmetric minimax regret rules coincide with
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classical hypothesis testing rules, but conventional test levels imply unrealistic degrees of

asymmetry.

In Chapter 2, written with Charles Manski, the treatments have binary outcomes and

the objective is to maximize a concave-monotone function of the success rate. We show

that admissibility of statistical treatment rules depends on that function�s curvature.

We establish a general complete class for concave and strictly monotone functions and a

more speci�c result for functions with weak curvature, including the logarithmic

function often used to model risk aversion. We compute minimax regret rules for speci�c

welfare functions to demonstrate how they depend on the functions�curvature.

Chapter 3 studies the measurement of the precision of inference on partially

identi�ed parameters. Planners of surveys and experiments that partially identify

parameters of interest can choose between using resources to reduce sampling error or to

reduce the extent of partial identi�cation. Previous research unanimously measured

precision of inference by the length of 95% con�dence intervals for the identi�cation

region. In a problem with normally distributed data, I show that other measures of

precision (maximum mean squared error and maximum regret for treatment choice)

yield qualitatively di¤erent conclusions about the relative value of reducing sampling

error and the extent of partial identi�cation.
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CHAPTER 1

Statistical Treatment Choice Based on Asymmetric Minimax

Regret Criteria

1.1. Introduction

Consider a planner who has to choose which one of two mutually exclusive

treatments should be assigned to members of a population. One treatment is the status

quo, whose e¤ects are well known. The other is a promising innovation, whose exact

e¤ects have yet to be determined. The treatments in question may be, for example, two

alternative drugs or therapies for a medical condition, or two di¤erent unemployment

assistance programs. Suppose that a randomized clinical trial or some other experiment

will be conducted and its results will be used to choose which treatment population

members will receive.

The planner faces two problems. First, she has to know what experiment (in

particular, what sample size) should be chosen to get a su¢ ciently accurate estimate of

the treatment e¤ect. Second, she has to select how treatment choices will be determined

based on the statistical evidence obtained from the experiment. Often, treatment choice

is based on the results of a statistical hypothesis test, which is constructed to keep the

probability of mistakenly assigning an inferior innovation (a Type I error) below a

speci�ed level (usually .05 or .01). Then, the sample size is selected to obtain a high
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probability (usually .8 or .9) that the innovation will be chosen if its positive e¤ect

exceeds some value of interest.

Following Wald�s (1950) formulation of statistical decision theory, I analyze the

performance of alternative statistical methods based on their expected welfare over

di¤erent realizations of the sampling process, rather than just their probabilities of

error. In particular, I continue a recent line of work advocating and investigating

treatment choice procedures that minimize maximum regret by Manski (2004, 2005,

2007a, 2007b, 2008a, 2008b), Hirano and Porter (2006), Stoye (2007a, 2007b, 2007c),

Eozenou, Rivas, and Schlag (2006) and Schlag (2007). Regret is the di¤erence between

the maximum welfare that could be achieved given full knowledge of the e¤ects of both

treatments (by assigning the treatment that is actually better) and the expected welfare

of treatment choices based on experimental outcomes. The latter is smaller, because

experimental outcomes generally do not allow the decision maker to choose the best

treatment 100 percent of the time.

This chapter�s main departure from previous literature on the subject is asymmetric

consideration of Type I regret (due to mistakenly using an inferior new treatment) and

Type II regret (due to missing out on using a superior innovation). The persistent use in

treatment choice problems of the hypothesis testing approach, which allows Type II

errors to occur with higher probability than Type I errors, suggests that many decision

makers want to place the burden of proof on the new treatment. Most do so by selecting

a low hypothesis test level, such as � = :05. It is not clear what principles, besides

convention, are there to guide the selection of hypothesis test level for the circumstances

of a particular decision problem. Values of maximum Type I and maximum Type II
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regret of a statistical procedure could provide the decision maker with more relevant

characteristics of its performance than the traditional hypothesis testing measures (test

level and power), since regret takes into account both the probability of making an error

and its economic magnitude.

How to balance Type I and Type II regret in a particular problem is up to the

decision maker. In this chapter I consider three criteria. First, the traditional minimax

regret criterion gives equal consideration to Type I and Type II regret. It seeks to

minimize the larger of the two, thus minimax regret solutions have equal maximum

Type I and Type II regret.

The second criterion is minimax regret with an asymmetric linear

reference-dependent welfare function. This criterion gives larger weight to maximum

Type I regret, thus the maximum Type II regret of asymmetric minimax regret solutions

is larger than their maximum Type I regret by a given factor. When the treatment

e¤ect estimate is normally distributed, hypothesis test based solutions with a given level

� correspond to asymmetric minimax regret solutions for some asymmetry factor K (�)

for any sample size and variance. In a sense, the minimax regret criterion with an

asymmetric welfare function provides a decision-theoretic rationalization of hypothesis

tests that is based on expected welfare.

The third criterion is limited Type I regret. Many decision makers face the problem

of making treatment choices based on existing statistical evidence, without any control

over its sample size and precision. Symmetric and asymmetric minimax regret, as well

as hypothesis testing, often lead to solutions whose maximum Type I regret is

proportional to the standard error of the estimate of average treatment e¤ect. This may
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not be appealing to decision makers primarily interested in "safety" of new treatments,

which I interpret as low Type I regret. The limited Type I regret criterion seeks to

minimize maximum regret subject to an explicit constraint that maximum Type I regret

should not exceed a given acceptable level. This approach guarantees limited expected

welfare losses due to Type I errors regardless of the decision process that underlies

sample size selection.

Instead of looking at maximum regret values, a Bayesian decision maker would assert

a subjective probability distribution over the set of feasible treatment outcome

distributions, use sample realizations to derive an updated posterior probability

distribution, and maximize expected welfare with regard to that posterior distribution

(which is equivalent to minimizing expected regret). Unfortunately, in many situations

decision makers do not have any information that would form a reasonable basis for

asserting a prior distribution. In group decision making, members of the group may

disagree in their prior beliefs. These problems lead to frequent use of conventional prior

distributions in applied Bayesian analysis. Bayesian treatment choice based on a

conventional prior distribution, rather than on a subjective distribution re�ecting the

decision maker�s prior information, does not have a clear economic justi�cation.

Decision making based on maximum regret is a conservative approach to dealing with

the lack of reasonable prior beliefs, since maximum regret is the sharp upper bound on

expected regret for decision makers with any prior distributions.

The chapter proceeds in the following order. Section 1.2 exposits the

decision-theoretic formulation of the problem and the criteria used to address it. In

section 1.3, I consider a simple but instructive case where the experiment generates a
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normally distributed random variable with known or bounded variance. I analyze

conventional treatment choice rules based on hypothesis testing and sample size choice

based on power analysis in light of their maximum regret and compare them with

minimax regret, asymmetric minimax regret and limited Type I regret solutions. Section

1.4 analyzes treatment choice when treatment outcomes are either binary or bounded

random variables. Exact mimimax regret results were obtained for these problems by

Stoye (2007b) and Schlag (2007). I extend their results to derive asymmetric minimax

regret and limited Type I regret solutions using a di¤erent technique. I also demonstrate

that the minimax-regret solution proposed by these authors for bounded outcomes does

not minimize maximum regret if the decision maker can place an informative upper

bound on the variance of the outcome distribution, which is the case in many

applications. In the concluding section 1.5, I discuss the use of approximations, bounds,

and numerical methods for problems that do not yet have convenient analytical

solutions and illustrate their performance in a hypothetical clinical trial problem with

rare dangerous side e¤ects. Section 1.6 collects all proofs.

1.2. Statistical Treatment Rules, Welfare and Regret

The basic setting is the same as in Manski (2004, 2005) and in Manski and Tetenov

(2007). The planner�s problem is to assign members of a large population to one of two

available treatments t 2 T; T = f0; 1g. Let t = 0 denote the status quo treatment and

t = 1 the innovation. Each member j of the population, denoted J , has a response

function yj (t) describing that individual�s potential outcome under each treatment t.

The population is a probability space (J;
; P ) and the probability distribution P [y (�)]
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of the random function y (�) describes treatment response across the population. The

population is "large," in the sense that J is uncountable and P (j) = 0; j 2 J .

The planner does not know the probability distribution P , but knows that it belongs

to a set of feasible treatment response distributions fP
; 
 2 �g. 
 will be called the

state of the world. I assume that average treatment outcomes E
 [y (t)] are �nite for all t

and 
.

All population members are observationally identical to the planner, thus the

planner�s treatment assignment decision can be fully described by an action

a 2 A;A = [0; 1], where a denotes the proportion of the target population assigned by

the planner to the innovative treatment t = 1. Proportion 1� a, then, is assigned to the

status quo treatment t = 0. I assume that fractional treatment assignment (0 < a < 1)

is carried out randomly.

I consider planners whose welfare from taking action a in state of the world 
 is the

average treatment outcome across the population:

U (a; 
) � (1� a) � E
 [y (0)] + a � E
 [y (1)]

= E
 [y (0)] + �
 � a.

The second line expresses the welfare function in terms of the average treatment e¤ect

�
 � E
 [y (1)]� E
 [y (0)] ,

which is the primary population statistic of interest to the planner.
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The planner conducts an experiment and observes its outcome �a random vector

X 2 X . The probability distribution of X depends on the unknown state of the world 


and will be denoted by Q
. A (random) function � mapping feasible experimental

outcomes from X into actions from A will be called a statistical treatment rule (or

simply a decision rule). The action chosen by a planner with statistical treatment rule �

when X is observed will be denoted by � (X). The set of all such functions (feasible

statistical treatment rules) will be labeled D.

I follow Wald�s (1950) approach and evaluate alternative statistical treatment rules

based on the expected welfare they yield across repeated samples in each state of the

world 
. If the planner�s welfare function is U (a; 
) , then the expected welfare from

using statistical treatment rule � in state of the world 
 equals

W (�; 
) �
Z
X2X

U (� (X) ; 
) dQ
(1.1)

= E
 [y (0)] + �
E
 [� (X)] ,

where E
 [�(X)] denotes
R
X2X � (X) dQ
.

Statistical treatment rule �2 dominates �1 if W (�2; 
) � W (�1; 
) for all 
 2 � with

strict inequality at least for one value of 
. Statistical treatment rule �1 is said to be

admissible if there does not exist any �2 2 D that dominates �1, otherwise �1 is called

inadmissible.

The analysis of this chapter is based on a normalization of the expected welfare

called regret. The regret of statistical treatment rule � is the di¤erence between the

highest expected welfare achievable by any feasible statistical treatment rule in state of
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the world 
 and the expected welfare of statistical treatment rule � :

R (�; 
) � sup
�02D

W (�0; 
)�W (�; 
) .

The highest welfare in state of the world 
 is achieved by statistical treatment rule

��
 (X) = 1 j�
 > 0j that selects the optimal (in state 
) treatment regardless of

experimental outcomes. The regret function, then, equals

(1.2) R (�; 
) =W
�
��
; 


�
�W (�; 
) =

8><>: �
 � (1� E
 [� (X)]) if �
 > 0

��
 � E
 [� (X)] if �
 � 0.

The regret of a statistical treatment rule, thus, is the product of the probability of

making an error (assigning an individual to the wrong treatment) and the magnitude of

the welfare loss su¤ered from that error.

1.2.1. Treatment Choice Based on Hypothesis Testing

The most common framework used for treatment choice between a status quo treatment

and an innovation is hypothesis testing. Typically, the researcher poses two mutually

exclusive statistical hypotheses �a null hypothesis H0 : �
 � 0; that the innovation is no

better than the status quo treatment, and an alternative hypothesis H1 : �
 > 0; that the

innovation is superior. If the null hypothesis is rejected, then treatment t = 1 is assigned

to the population. If it is not rejected, the status quo treatment t = 0 is assigned.

Rejecting the null hypothesis when it is, in fact, true (assigning an inferior

innovation t = 1 to the population) is called a Type I error. Not rejecting the null

hypothesis when it is, in fact, false (assigning the status quo treatment instead of the
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superior innovation) is called a Type II error. Hypothesis testing procedures are

designed to have a certain signi�cance level, which is the probability of making a Type I

error (the maximum probability over states of the world 
 that fall under the null

hypothesis). The signi�cance level (also called �-level) is usually set at conventional

values � = 0:05 or � = 0:01.

The probability of not making a Type II error (assigning an innovation when it is

superior to the status quo treatment) is called the power of the test. The power of the

test is usually calculated for some speci�c value ��
 > 0. The sample size of an

experiment is selected so that a hypothesis test with a chosen signi�cance level would

have the desired power (typically :8 or :9) at ��
.

1.2.2. Treatment Choice Based on Maximum Regret

Savage (1951) introduced the criterion of minimizing maximum di¤erence between

potential and realized welfare (now called regret) in a review of Wald (1950) as a

clari�cation of Wald�s minimax principle. Under the minimax regret criterion, statistical

treatment rule �0 is preferred to � if

max

2�

R (�0; 
) < max

2�

R (�; 
) .

A planner who accepts the minimax-regret criterion should select a statistical

treatment rule that satis�es

(1.3) �M 2 argmin
�2D

max

2�

R (�; 
)
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and select a sample size such that the maximum regret max

2�

R (�M ; 
) is acceptable.

1.2.3. Asymmetric Reference-Dependent Welfare

As a way to express the planner�s desire to place the burden of proof on the innovation,

I will also consider asymmetric reference-dependent welfare functions. For an

asymmetry coe¢ cient K > 0, let the welfare function UA(K) be linear in the average

treatment outcomes with the same slope as U above the reference point E
 [y (0)] and a

K times steeper slope below the reference point. Formally, de�ne UA(K) as:

UA(K) (a; 
) � E
 [y (0)] +

8><>: (U (a; 
)� E
 [y (0)]) if U (a; 
) > E
 [y (0)] ,

K � (U (a; 
)� E
 [y (0)]) if U (a; 
) � E
 [y (0)] ,

= E
 [y (0)] +

8><>: �
 � a if �
 > 0,

K�
 � a if �
 � 0.

The expected welfare for this kinked linear welfare function equals

WA(K) (�; 
) �
Z
X2X

UA(K) (� (X) ; 
) dQ
(1.4)

= E
 [y (0)] +

8><>: �
E
 [� (X)] if �
 > 0,

K � �
E
 [� (X)] if �
 � 0.

Ordinal relationships between expected welfare of two statistical decision rules do not

depend on the asymmetry factor K > 0. For any �1; �2 2 D and 
 2 � :

W (�2; 
) T W (�1; 
)() WA(K) (�2; 
) T WA(K) (�1; 
) .
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Thus, the set of admissible statistical treatment rules is the same for all asymmetrical

linear welfare functions (1.4) and for the standard linear welfare (1.1).

The regret function for expected welfare (1.4) equals

RA(K) (�; 
) � sup
�02D

WA(K) (�
0; 
)�WA(K) (�; 
)

=

8><>: �
 � (1� E
 [� (X)]) if �
 > 0;

�K�
 � E
 [� (X)] if �
 � 0,

=

8><>: R (�; 
) if �
 > 0;

KR (�; 
) if �
 � 0.

The only di¤erence between this regret function and the regret function for standard

linear welfare (1.2) is the factor K for �
 � 0. Maximum regret under the asymmetrical

welfare function can be expressed through the regret function for linear welfare as

max

2�

RA(K) (�; 
) = max
�
K � �RType I (�) ; �RType II (�)

�
,

where

�RType I (�) � max

:�
�0

R (�; 
)

is the maximum Type I regret (maximum regret across states of the world in which the

innovation is inferior) under the linear welfare function and

�RType II (�) � max

:�
>0

R (�; 
)

is the maximum Type II regret (maximum regret across states of the world in which the

innovation is superior). The names Type I and Type II regret are given in analogy to
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Type I and Type II errors in hypothesis testing. Type I regret is the welfare loss due to

Type I errors, while Type II regret is the welfare loss due to Type II errors under the

null hypothesis H0 : �
 � 0.

Since the asymmetry factor K does not a¤ect admissibility, I will only consider

asymmetrical welfare functions indirectly, by solving the weighted minimax regret

problem

(1.5) min
�2D

max
�
K � �RType I (�) ; �RType II (�)

�
for the linear expected welfare (1.1). In problem (1.5) the planner gives K times greater

weight to regret from Type I errors.

1.2.4. Treatment Rules with Limited Type I Regret

Using minimax regret treatment rules may pose a particular problem for decision makers

who do not have a choice over the precision of statistical evidence on which they have to

base their decisions. Consider an extreme example. Suppose that a medical regulatory

agency (the Food and Drug Administration in the United States or the European

Agency for the Evaluation of Medicinal Products) has to choose whether to approve an

innovative treatment for a common disease Z. The status quo medical treatment for

disease Z has a proven record of curing the disease with probability .5. Proponents of

the innovative treatment provide the regulator with results of a clinical trial in which

�ve randomly selected patients with disease Z received the innovative treatment and in

all �ve cases the disease has been cured. The minimax regret and hypothesis testing (at

.05 level) statistical treatment rules both prescribe that all population members should
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be assigned to the innovation based on this experimental result. Both rules, however,

imply much higher expected welfare losses if the innovation is inferior than clinical trials

of usual size; the decision maker may not �nd this acceptable.

For decision makers who are primarily concerned with welfare loss due to mistakenly

assigning an inferior innovation and cannot control the precision of experimental

evidence, I propose the limited Type I regret criterion:

(1.6)
�L(�r) 2 argmin

�2D
max

2�

R (�; 
) ;

s:t: �RType I (�) � �r:

The criterion selects a statistical treatment rule with minimal maximum regret, subject

to an explicit constraint that Type I regret (regret from mistakenly assigning the

innovation) should not exceed a given value �r. This criterion is similar to the classical

hypothesis testing criterion in that both aim to limit the damage from Type I errors.

Limited Type I regret, however, expresses the desired level of "safety" in terms of the

maximum possible welfare loss from Type I errors, rather than just the maximum

probability of making them.

1.3. Simple Normal Experiment

I will �rst consider a very simple experiment whose outcome X 2 R is a scalar

normally distributed random variable with unknown mean �
 2 R and known variance

�2:

X � N (�
; �2).
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While X is a scalar, it need not originate from an experiment with sample size one. For

example, X could be a sample average X = 1
N

Pn
i=1 xi of N independent random

observations. If observations (x1; :::; xN) all have a normal distribution N (�
; �
2
0), then

X is a su¢ cient statistic for (x1; :::; xN) with variance �2 =
�20
N
. Comparing single normal

draw experiments with di¤erent values of �, then, is equivalent to comparing

experiments with di¤erent sample sizes.

More importantly, the probability distribution of many commonly used statistical

estimators of average treatment e¤ect converges to a normal distribution as sample size

grows
p
N
�
�̂ � �


�
D! N (0; �20). Then the asymptotic distribution of �̂ is said to be

N (�
; �
2
0

N
). Heuristically, studying experiments with a single normally distributed

outcome for di¤erent values of � will suggest what e¤ect di¤erent types of decision rules

and sample sizes have on regret in more general settings.

It follows from the results of Karlin and Rubin (1956, Theorem 1) that if the

distribution of X exhibits the monotone likelihood ratio property (which is true for

normal and binomial distributions) and the welfare function is (1.1), then the class of

monotone decision rules

�T;�(X) �

8>>>><>>>>:
1 X > T

� X = T ; � 2 [0; 1]; T 2 R,

0 X < T

is essentially complete (for any decision rule �0 there exists �T;� such that

W (�0; 
) � W (�T;�; 
) in all states of the world). Since the probability of observing

X = T equals zero for the normal distribution, it follows that a smaller class of threshold
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decision rules

�T (X) � 1 jX > T j ; T 2 R

is also essentially complete. Thus, considering other rules is not necessary in this

problem.

Given that X is normally distributed, the regret of a threshold decision rule �T in

state of the world 
 equals

R(�T ; 
) =

8><>: �
 � P
(X � T ) = �
 � �
�
T��

�

�
if �
 > 0,

��
 � P
(X > T ) = ��
 � �
�
�
�T
�

�
if �
 � 0,

which is the probability of making an incorrect decision multiplied by j�
j, the

magnitude of the loss incurred from the mistake. � denotes the standard normal

cumulative distribution function.

Maximum Type I and Type II regret equal

�RType I (�T ) = max

:�
�0

�
��
 � �

�
�
 � T
�

��
= � �max

h�0

�
�h�

�
h� T

�

��
;(1.7)

�RType II (�T ) = max

:�
>0

�
�
 � �

�
T � �

�

��
= � �max

h>0

�
h�

�
T

�
� h
��

:

The right-hand equalities are derived by substituting h = �

�
. These functions have �nite

positive values for every T 2 R. Since R (�T ; �
) = R (��T ;��
), it follows that

�RType II (�T ) = �RType I (��T ). Lemma 1.1 shows that the decision maker faces a trade o¤

between maximum Type I and maximum Type II regret. Higher threshold values imply

lower Type I regret, but necessarily higher Type II regret.
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Figure 1.1: MaximumType I and Type II regret as functions of the decision rule threshold.

Lemma 1.1. a) �RType I (�T ) is a continuous, strictly decreasing function of T;

lim
T!�1

�RType I (�T ) =1 and lim
T!1

�RType I (�T ) = 0;

b) �RType II (�T ) is a continuous, strictly increasing function of T ,

lim
T!�1

�RType II (�T ) = 0 and lim
T!1

�RType II (�T ) =1:

Figure 1.1 displays the maximum Type I and maximum Type II regret as functions

of the decision rule threshold T . The scale of both axes is normalized by �. The

maximum regret max

2�

R (�T ; �
) = max
�
�RType I (�T ) ; �RType II (�T )

�
is minimized when

�RType I (�T ) = �RType II (�T ), which happens only at T = 0. The minimax regret

treatment rule in this problem is �0. This is sometimes called the plug-in rule (a plug-in
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rule takes the estimated value of the average treatment e¤ect and assigns treatments as

if it were the true value).

Similarly, the minimax regret statistical treatment rule under asymmetric welfare

function WA(K) is uniquely characterized by the equation

K � �RType I (�T ) = �RType II (�T ) .

By substituting right-hand expressions from (1.7), this characterization can be rewritten

as

K �max
h�0

�
�h�

�
h� T

�

��
= max

h>0

�
h�

�
T

�
� h
��

.

Since only one value of T
�
solves the equation for a given K, the threshold of the

minimax regret statistical treatment rule is proportional to �.

A conventional one-sided hypothesis test with signi�cance level � rejects the null

hypothesis (� � 0) and assigns the innovative treatment if X > ���1 (1� �). This

critical value guarantees that the probability of a Type I error does not exceed � for any

�
 � 0. Since X��

�

has a standard normal distribution,

P
�
X > ���1 (1� �)

�
= 1� P

�
X � �

�

� ��1 (1� �)� �

�

�
=

= 1� �
�
��1 (1� �)� �


�

�
�

� 1� �
�
��1 (1� �)

�
= �:

The statistical treatment rule based on results of a hypothesis test with level � is a

threshold rule �H(�)with threshold H (�) � ���1 (1� �). For a given test level �, the

threshold T is proportional to the standard error �. Thus a hypothesis test based
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Test signi�cance level Threshold Max Type I regret Max Type II regret K (�)
� = :5 (minimax regret) T = 0 :17� :17� 1
� = :25 T = :6745� :0608� :3724� 6:125
� = :1 T = 1:282� :01877� :6409� 34:15
� = :05 T = 1:645� :008178� :8371� 102:4
� = :025 T = 1:96� :003665� 1:026� 279:9
� = :01 T = 2:326� :001304� 1:264� 969:6

Table 1.1: Maximum Type I and Type II regret of statistical treatment rules induced by
hypothesis tests based on a normally distributed estimate with known variance.

treatment rule can be rationalized as a solution to an asymmetrical minimax regret

problem with asymmetry factor

K (�) =
max
h>0

fh� (H (�) =� � h)g

max
h�0

f�h� (h�H (�) =�)g =
max
h>0

fh� (��1 (1� �)� h)g

max
h�0

f�h� (h� ��1 (1� �))g .

K (�) is the ratio of maximum Type II to maximum Type I regret of the hypothesis test

based decision rule, which depends only on the test level �. In this normal model, the

correspondence between a hypothesis test based rule with level � and an asymmetric

minimax regret rule with level K (�) does not depend on the standard error of �, and

thus on sample size. This feature is speci�c to the normal example. For example, if X is

a binomial variable, then hypothesis test based rules with the same level correspond to

di¤erent asymmetric minimax regret treatment rules for di¤erent sample sizes.

Table 1.1 provides maximum Type I and II regret values and the asymmetry factors

corresponding to commonly used hypothesis test levels. Decision rules based on the

one-sided � = :05 level hypothesis test minimize maximum regret for decision makers

who place 102 times greater weight on Type I regret than on Type II regret. Decision

rules based on � = :01 level tests are minimax regret for decision makers who place
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Figure 1.2: Regret functions of minimax regret and hypothesis test based decision rules.

nearly 970 times greater weight on Type I regret. The trade o¤ between Type I and

Type II regret is markedly di¤erent from the trade o¤ between raw Type I and Type II

error rates (an � = :05 level test has a 95% maximum probability of Type II error,

which is 19 times higher than the maximum probability of the test�s Type I error).

Figure 1.2 compares the regret functions of the minimax regret treatment rule �0 and

the treatment rule �H(:05) induced by a hypothesis test with signi�cance level � = :05

over a range of feasible values of �
. The scale of both axes is normalized by �. The

maximum regret of the hypothesis test rule is approximately :837�; which is nearly �ve

times higher than the maximum regret of the minimax regret treatment rule

(approximately :17�). The hypothesis test rule has lower regret over �
 � 0, but it can

only achieve it by greatly increasing the regret for �
 > 0. The greatest expected welfare
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losses from using a hypothesis test rule occur when the innovative treatment is

moderately e¤ective.

1.3.1. Limited Type I Regret

Compared to the minimax regret rule, hypothesis testing with signi�cance level � = :05

has a clear advantage in lower regret over �
 � 0. This can make minimax regret

unattractive for decision makers who are more concerned about negative consequences of

accepting a potentially inferior new treatment than about its potential foregone bene�ts.

I do not think, however, that hypothesis testing practices adequately address such

concerns. It is common to see tests with the same signi�cance level � = :05 applied to

treatment e¤ect estimates with di¤erent variance and sample size. While such tests

always limit the probability of Type I error to :05, the maximum Type I regret

(� :008�) is proportional to �.

Many decision makers, no doubt, would like to sensibly adjust the test level to the

circumstances of a particular problem. Considering maximum Type I regret of a

threshold rule instead of its the maximum probability of Type I error simpli�es this

task. Table 1.1 provides maximum Type I and Type II regret values for threshold rules

corresponding to hypothesis tests with di¤erent signi�cance levels.

Instead of imposing a limit on the probability of Type I errors, the decision maker

could directly impose a limit �r on maximum acceptable Type I regret and use the

limited Type I regret criterion (1.6). The limited Type I statistical treatment rule

coincides with the minimax regret rule if its maximum regret :17� does not exceed �r.

Otherwise, it selects a treatment rule with the smallest threshold T > 0 that ensures
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that maximum Type I regret does not exceed �r. If the estimator has high variance �2,

reducing maximum Type I regret comes at a price of higher Type II regret. For

example, if the decision maker �nds that a threshold value T = 1:645� is required to

bring maximum Type I regret to an acceptable level �r, she has to accept that such

statistical treatment rule implies a maximum Type II regret that is over 100 times larger

than �r. This underscores the importance of using estimators of treatment e¤ect with low

variance (high sample size), which allow the decision maker to attain acceptable

maximum Type I regret with statistical treatment rules that have lower Type II regret.

1.3.2. Sample Size Selection

I will illustrate sample size selection based on maximum regret by comparing it with one

of the conventional methods. The International Conference on Harmonisation

formulated "Guideline E9: Statistical Principles for Clinical Trials" (1998), adopted by

the US Food and Drug Administration and the European Agency for the Evaluation of

Medicinal Products. The guideline provides researchers with the values of Type I and

Type II errors typically used for hypothesis testing and sample size selection in clinical

trials. For hypothesis testing, the limit on the probability of Type I errors is

traditionally set at 5% or less. The trial sample size is typically selected to limit the

probability of Type II errors to 10-20% for a minimal value of the treatment e¤ect that

is deemed to have "clinical relevance" or at the anticipated value of the e¤ect of the

innovative treatment.

Suppose that a researcher considers bearable the loss of public welfare due to a 10%

probability that her innovative treatment could be rejected if its actual treatment e¤ect
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equals �� > 0. Following the convention, she selects the sample size for which the

variance of X equals ��2, where ��2 satis�es the condition that X will fall under the 5%

hypothesis test threshold H (:05) = ����1 (:95) with probability 10% if �
 = ��:

P
�
X � H (:05) j�
 = ��

�
= �

�
��1 (:95)�

��

��

�
= :1,

�� =
��

��1 (:95)� ��1 (:1) =
��

2:926
.

The value of regret that the researcher �nds acceptable at �
 = �� thus equals :1��. This

procedure does not make apparent to the researcher that a much larger welfare loss will

be su¤ered at a twice smaller value of �
 = 1:46�� � :5��, where the regret function

achieves its maximum of :837�� = :286��.

Consider now how the sample size would di¤er if it were selected by the researcher

with an explicit objective that maximum regret should equal :1�� in two scenarios. First,

suppose that the researcher planning the experiment has to take for granted that the

decision making will be carried out using a 5% hypothesis test rule. SInce its maximum

regret equals :837�, she would select sample size such that

:837� = :1��

� =
:1��

:837
=
:1 � 2:926��
:837

= :35��,

which implies sample size that is over eight times larger than the one selected by power

calculations in the example above. In a second scenario, suppose that the researcher has

control over treatment assignment and plans to use the minimax-regret decision rule �0.

Since the maximum regret of the minimax-regret decision rule equals :17�, the sample
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size should be such that

:17� = :1��


� = 1:722��,

which implies sample size that is almost three times smaller than the one selected by

power calculations.

1.3.3. Normally Distributed Outcomes with Unknown Variance

So far in this section I have assumed that the planner knows the variance of the normally

distributed average treatment e¤ect estimate X. Suppose now, instead, that the data

(x1; :::; xN) consists of N independent normally distributed observations with unknown

mean �
 and unknown variance �2
. Let the set of feasible states of the world be

� �
�

 : �
 2 R; �2
 2

�
�2; ��2

�	
;

where �2 > 0 and ��2 <1 and let

�� �
�

 : �
 2 R; �2
 = ��2

	
denote the subset of states of the world with the highest feasible outcome variance. Let

�X � 1
N

PN
i=1 xi be the sample mean and S

2 � 1
N

PN
i=1

�
xi � �X

�2
the sample variance. It

is well known (cf. Berger, 1985) that the pair
�
�X;S2

�
is a su¢ cient statistic for

(x1; :::; xN), thus only decision rules that are functions of �X and S2 need to be

considered. It turns out, however, that decision rules satisfying criteria based on
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maximum Type I and Type II regret could often be found within a smaller class of

threshold decision rules that depend only on the sample mean �X.

Proposition 1.2. Let �T � 1
�� �X > T

�� be a threshold statistical treatment rule such
that T � �

p
N
��
jT j satis�es the condition

(1.8) max
h2(0;T �)

�
h � �

�
��

�
(T � � h)

��
� max

h�T �
fh � � (T � � h)g ;

then

a) maximum Type I and Type II regret of �T over the set � is the same as over the set ��:

max

2�:�
�0

R (�T ; 
) = max

2��:�
�0

R (�T ; 
) ;

max

2�:�
>0

R (�T ; 
) = max

2��:�
>0

R (�T ; 
) ,

b) there is no statistical treatment rule �0
�
�X;S2

�
that has both lower maximum Type I

regret and lower maximum Type II regret than �T .

Condition (1.8) ensures that the threshold decision attains maximum Type I and

maximum Type II regret on the subset ��. If it is not satis�ed, the maximum Type I or

maximum Type II regret of �T could be higher on the set � than on ��, then there

maybe exists a non-threshold decision rule that has both lower Type I and lower Type II

regret than �T .

It follows from Proposition 1.2 that threshold decision rules that satisfy minimax

regret, asymmetric minimax regret, and limited Type I regret criteria for outcomes with

�xed variance (set of feasible states of the world ��) also satisfy the corresponding

criteria for outcomes with bounded variance (set of feasible states �) if their threshold
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values satisfy condition (1.8). The range of thresholds for which condition (1.8) holds

depends on the ratio ��
�
. For ��

�
= 1, it holds if

p
N
��
jT j � 1:25. In the opposite extreme

case when ��
�
!1, it holds if

p
N
��
jT j � :22.

1.4. Exact Statistical Treatment Rules for Binary and Bounded Outcomes

Exact solutions to the minimax regret and limited type I regret problems and exact

maximum regret values are available when the data X consists of N independent

random outcomes of treatment t = 1, provided that the outcomes are binary or have

bounded values. I will �rst consider the case of binary outcomes and then its extension

to outcomes with bounded values.

1.4.1. Binary Outcomes

Let the treatment outcomes of the innovative treatment t = 1 be binary, w.l.o.g. let

y (1) 2 f0; 1g, and let the known average outcome of the status quo treatment t = 0

equal p0 � E [y (0)] 2 (0; 1). Let the set of feasible probability distributions of y (1) be a

set of Bernoulli distribution with means p
 2 [a; b] ; 0 � a < p0 < b � 1 (if p0 is outside

of the interval [a; b], then the treatment choice problem is trivial). The experimental

data consists of N independent random outcomes (x1; :::; xN), each having a Bernoulli

distribution with mean p
. The sum of outcomes X =
Pn

i=1 xi has a binomial

distribution with parameters N and p
. X is a su¢ cient statistic for (x1; :::; xN), so it is

su¢ cient to consider statistical treatment rules that are functions of X.
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It follows from the results of Karlin and Rubin (1956, Theorems 1 and 4) that

monotone statistical treatment rules

�T;� (X) =

8>>>><>>>>:
1 X > T

� X = T

0 X < T

; T 2 f0; :::; Ng; � 2 [0; 1]

are admissible and form an essentially complete class, thus it is su¢ cient to consider

only monotone rules. The regret of a monotone rule �T;� equals

R (�T ;�; 
) =

8>>>><>>>>:
�
 �

(
�B (T;N; p
) +

P
T<n�N

B (n;N; p
)

)
if �
 > 0,

��
 �
(
1�

 
�B (T;N; p
) +

P
T<n�N

B (n;N; p
)

!)
if �
 � 0,

where B (n;N; p
) denotes the binomial probability density function with parameters N

and p
 and �
 � p
 � p0.

It will be convenient to use a one-dimensional index for monotone rules

D (�T;�) � T + (1� �). There is a one to one correspondence between index values

D 2 [0; N + 1] and the set of all distinct monotone decision rules. D = 0 corresponds to

the decision rule that assigns all population members to the innovation, no matter what

the experimental outcomes are. D = N + 1 corresponds to the most conservative

decision rule that always assigns the status quo treatment.

Lemma 1.3 establishes properties of maximum Type I and Type II regret of

monotone statistical treatment rules for binomially distributed X that lead to simple

characterisations of minimax regret, asymmetric minimax regret, and limited Type I



www.manaraa.com

37

regret rules. As before, maximum Type I regret is �RType I (�) � max

:p
2[a;p0]

R (�; 
) and

maximum Type II regret is �RType II (�) � max

:p
2(p0;b]

R (�; 
).

Lemma 1.3. If X has a binomial distribution, then

a) �RType I (�) is a continuous and strictly decreasing function of D (�) with

�RType I (�) = 0 for D (�) = N + 1.

b) �RType II (�) is a continuous and strictly increasing function of D (�) with

�RType II (�) = 0 for D (�) = 0.

It follows from lemma 1.3 that there is a unique value of D (�M) such that

�RType I (�M) = �RType II (�M) :

�M is the minimax regret treatment rule. While its characterisation is implicit,

monotonicity and continuity of the maximum Type I and Type II regret as functions of

D (�) makes computation very straightforward. The same characterisation of the

minimax regret treatment rule for p
 2 [0; 1] was derived by Stoye (2007b, Proposition

1(iii)) using game theoretic methods.

Likewise, there is a unique value D
�
�A(K)

�
such that

K � �RType I
�
�A(K)

�
= �RType II

�
�A(K)

�
:

�A(K) is the minimax regret statistical treatment rule for asymmetric reference

dependent welfare function WA(K). Limited Type I regret statistical treatment rule with

Type I regret threshold �r is also easily characterized. If �r � max

2�

R (�M ; 
), then there is

a unique value D
�
�L(�r)

�
such that �RType I

�
�L(�r)

�
= �r, then �L(�r) is the limited Type I
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regret treatment rule. If �r < max

2�

R (�M ; 
), then the Type I regret constraint is not

binding and the limited Type I regret treatment rule is the same as the minimax regret

treatment rule �M .

The following proposition derives the exact large sample limit of maximum regret of

minimax-regret statistical treatment rules. Unlike in the normal case covered in Section

1.3, the minimax-regret rule in the Bernoulli case does not generally coincide with the

plug-in rule:

�P � 1
����XN > p0

���� :
In large samples, however, the di¤erence between �M and �P has little e¤ect on

maximum regret. Proposition 1.4 shows that as sample size grows, the maximum regret

of minimax regret rules and plug-in rules (normalized by
p
N) converge to the same

limit. That limit is the same as minimax regret in a problem with N normally

distributed outcomes with �xed variance p0 (1� p0).

Proposition 1.4.

lim
N!1

s
N

p0 (1� p0)
max

2�

R (�P ; 
) = lim
N!1

s
N

p0 (1� p0)
max

2�

R (�M ; 
) = max
h>0

[h� (�h)] ,

which approximately equals :17:

1.4.2. Bounded Outcomes

Now consider a more general setting. Let the outcomes of treatment t = 1 be bounded

variables y (1) 2 [0; 1]. Let p0 � E [y (0)] 2 (0; 1) denote the known average treatment

outcome of the status quo treatment t = 0. Let fP
; 
 2 �g be the set of probability
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distributions P [y (1)] that the planner considers feasible. Assume that

E
 [y (1)] 2 [a; b] ; 0 � a < p0 < b � 1. Also, let fP
; 
 2 �Bg denote the set of all

Bernoulli distributions with E
 [y (1)] 2 [a; b] and assume that �B � �. The technique

outlined below relies on including all the Bernoulli distributions in the feasible set.

Schlag (2007) proposed an elegant technique, which he calls the binomial average,

that extends statistical treatment rules de�ned for samples of Bernoulli outcomes to

samples of bounded outcomes. The resulting statistical treatment rules inherit

important properties of their Bernoulli ancestors. Let � : f0; :::; Ng ! [0; 1] be a

statistical treatment rule de�ned for the sum of N i.i.d. Bernoulli distributed outcomes

(as in the previous subsection). Let X = (x1; :::; xN) be an i.i.d. sample of bounded

random variables with unknown distribution P
 [y (1)] and let Z = (z1; :::; zN) be a

sample of i.i.d. uniform (0; 1) random variables independent of X. Then the binomial

average extension of � is de�ned as

�� (X) � EZ�
�XN

k=0
1 [zk � xk]

�
.

Verbally, this extension can be described as a simple process:

a) randomly replace each bounded observation xi 2 [0; 1] with a Bernoulli observation

~xi = 1 with probability xi and with ~xi = 0 with probability 1� xi,

b) apply statistical treatment rule � to (~x1; :::; ~xN).

The random variables 1 [zk � xk] ; k = 0; :::; N are i.i.d. Bernoulli with expectation

E
 [y (1)], thus
PN

k=0 1 [zk � xk] has a Binomial distribution with parameters N and

E
 [y (1)]. For any state of the world 
, let �
 be the state of the world in which P�
 [y (1)]

is a Bernoulli distribution with the same mean E
 [y (1)]. Then E
(~�) = E�
 (�) and
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R(~�; 
) = R (�; �
). The regret of a binomial average treatment rule ~� in state of the

world 
 is the same as the regret of � in a Bernoulli state of the world �
 with the same

mean treatment outcomes. It follows that maximum Type I (II) regret of ~� in the

problem with bounded outcomes (
 2 �) is equal to maximum Type I (II) regret of � in

the problem with Bernoulli outcomes (
 2 �B).

If statistical treatment rule � satis�es some decision criterion based on maximum

Type I and maximum Type II regret for the feasible set of Bernoulli outcome

distributions, then its binomial average extension ~� satis�es the same criterion for the

feasible set of bounded outcome distributions. Suppose, for example, that �M minimizes

maximum regret for Bernoulli distributions. Suppose there was a treatment rule ~�
0
for

bounded distributions that had lower maximum regret than ~�M . Then �
0 would have to

have lower maximum regret over �B than �M , which would imply that �M does not

minimize maximum regret for the problem with Bernoulli distributions.

Binomial average extension yields exact minimax regret, asymmetric minimax regret

and limited Type I regret statistical treatment rules if the set of feasible outcome

distributions � includes the set of Bernoulli outcome distributions with the same means

�B. In many applications, however, the planner knows that Bernoulli outcome

distributions are not feasible. If the outcome variable is annual income of a participant

in a job training program, the planner may assume not only that the variable is

bounded, but also that it�s variance is much smaller than the variance of a Bernoulli

distribution with the same mean. If Bernoulli outcome distributions are excluded, then

binomial average based treatment rules may not be optimal. The following proposition
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shows that a plug-in statistical treatment rule

�P � 1
����� 1N

NX
i=1

xi > p0

�����
has lower asymptotic maximum regret than a binomial average extension of �M , a

minimax regret statistical treatment rule in the Bernoulli case.

Proposition 1.5. Let p0 = E [y (0)] and let fP
; 
 2 �g be the set of feasible

probability distributions of y (1) such that E
 (y (1)� E
 [y (1)])2 < �2h, where

�2h < p0 (1� p0). Let (x1; :::; xN) be i.i.d. random outcomes of treatment t = 1. Then

p
N sup


2�
R (�P ; 
) � �h �max

h>0
[h� (�h)] + o (1) .

Maximum regret of binomial average extension ~�M is by design the same as the

maximum regret of the minimax regret treatment rule �M in the Bernoulli case. As long

as for some � > 0; � contains distributions with all possible means in a �-neighborhood

of p0

8p 2 [p0 ��; p0 +�] ; 9
 : E
 [y (1)] = p,

the results of proposition 1.4 apply and

lim
N!1

p
N max


2�
R(~�M ; 
) =

p
p0 (1� p0) �max

h>0
[h� (�h)] > �h �max

h>0
[h� (�h)] .

Thus, for large enough N , max

2�

R(~�M ; 
) > sup

2�

R (�P ; 
). This underscores the

importance of placing appropriate restrictions on the set of feasible treatment outcome

distributions before looking for minimax regret or asymmetric maximum regret based

treatment rules.



www.manaraa.com

42

1.5. Evaluating Regret Using Approximations and Bounds

In conclusion, I would like to discuss methods for dealing with statistical problems

which do not have neat �nite sample solutions such as described in the previous sections

and give an example illustrating their properties. I will restrict attention to the case

when the data consists of N i.i.d. observations (x1; :::; xN) such that E [xi] = �
, where

�
 � E [y (1)]� E [y (0)] is the average treatment e¤ect. For many sets of feasible

distributions of fxig, there aren�t proven complete class theorems that justify restricting

attention to a small class of decision rules. Considering all feasible statistical treatment

rules that are functions of (x1; :::; xN) can be prohibitively di¢ cult, but progress can be

made by considering a suitable subset of feasible decision rules. Based on their

su¢ ciency in an idealized problem with normally distributed outcomes considered in

Section 1.3, the class of threshold decision rules �T � 1
�� �X > T

�� based on the sample
mean �X � 1

N

PN
i=1 xi is a reasonable and tractable candidate class of statistical

treatment rules to consider.

The regret of a threshold decision rule �T equals

R(�T ; 
) =

8><>: �
 � P
( �X � T ) if �
 > 0,

��
 � P
( �X > T ) if �
 � 0.

To evaluate maximum Type I and Type II regret of �T ,

�RType I (�T ) = sup
��0

(
�� � sup


:�
=�
P
( �X > T )

)
;

�RType II (�T ) = sup
�>0

(
� � sup


:�
=�
P
( �X � T )

)
;
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the planner needs to know, for each value of �, the range of feasible probabilities that

the sample mean �X exceeds the threshold T . Note that for each 
, P
( �X > T ) is a

non-increasing function of T and P
( �X � T ) is non-decreasing. It follows that

�RType I (�T ) is non-increasing and �RType II (�T ) is non-decreasing in T , thus solutions to

minimax regret, asymmetric minimax regret, and limited Type I regret problems can be

easily found if the researcher has a way to evaluate �RType I (�T ) and �RType II (�T ). The

problem of evaluating P

�
�X Q T

�
for distributions of xi that do not yield a convenient

closed-form expression is well studied in statistics. I will consider three main

approaches: brute force calculation or simulation, asymptotic approximation, and large

deviation bounds.

Brute force calculation or simulation

The main challenge for calculation or simulation is in selecting a �nite set of feasible

distributions that reliably approximates sup

:�
=�

P
( �X � T ) or sup

:�
=�

P
( �X > T ) for

di¤erent values of �. For some distributions (e.g. for discrete distributions with small

�nite support) such a set is easily constructed by creating a "grid" of distributions with

di¤erent parameter values. In nonparametric problems, however, it may be di¢ cult to

construct a �nite set of distributions that will be certain to reliably approximate

sup

:�
=�

P
( �X � T ) or sup

:�
=�

P
( �X > T ) for each �. If an insu¢ ciently rich set of

distributions is chosen, the approximation will be lower than actual maximum regret.

Asymptotic approximation
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With the knowledge of �
 � E
 [xi] and �2
 � V
 [xi], the planner can use the

asymptotic normal approximation

P
( �X � T ) � �
 p

N

�

(T � �
)

!
.

To evaluate maximum Type I and Type II regret of a threshold decision rule it is

su¢ cient to know minimum and maximum feasible variance �2
 for each feasible value of

�
. Normal approximations of tail probabilities of �X could be either higher or lower

than the actual values, thus approximate values of maximum Type I/II regret could also

be either above or below actual values.

Large deviation bounds

There are a number of inequalities for tail probabilities of the distribution of sample

mean �X. Using these inequalities allows the statistician to construct �nite sample upper

bounds on maximum Type I and Type II regret. Unlike asymptotic approximations,

bounds constructed using large deviation inequalities are guaranteed not to be lower

than actual maximum Type I/II regret values, which may be useful for conservative

decision making.

The simplest large deviation bound is given by the one-sided Chebyshev�s inequality,

which requires only that x0is have bounded variance:

T < �
 ) P
( �X � T ) � 1

1 +
�p

N
�

(T � �
)

�2 ,
T > �
 ) P
( �X > T ) � 1

1 +
�p

N
�

(T � �
)

�2 .



www.manaraa.com

45

If outcome variables are bounded xi 2 [a; b], then Hoe¤ding�s exponential inequality

(1963, Theorem 2) applies to the tail probabilities of �X:

T < �
 ) P
( �X � T ) � exp

8<:�2
 p

N

b� a (T � �
)
!29=; ,

T > �
 ) P
( �X > T ) � exp

8<:�2
 p

N

b� a (T � �
)
!29=; .

Hoe¤ding�s inequality was used by Manski (2004) to compute bounds on maximum

regret of plug-in (empirical success) treatment rules.

If a feasible distribution has �nite absolute third moment �
 � E jxi � �
j
3 2 R,

then bounds on P

�
�X � T

�
could be derived from the Berry-Esseen inequality:

��P
 � �X � T
�
� � (z)

�� � min�C0; C1 1

(1 + jzj)3
�
�
�


�3

p
N
; where z �

p
N

�

(T � �
) .

Lowest proven values for the constants C0 and C1 are C0 � 0:7975 (van Beek, 1972) and

C1 � 32 (Paditz, 1989). For large enough sample sizes, the Berry-Esseen inequality

could show that the tail probabilities are arbitrarily close to their normal approximation,

which is signi�cantly smaller than the Chebyshev�s and Hoe¤ding�s bounds.

1.5.1. A Numerical Example

I will illustrate how the di¤erent methods of evaluating maximum regret of threshold

rules may perform in practice on a simple example inspired by the problem of rare side

e¤ects in clinical trials. Let the average outcome of the status quo treatment t = 0 be

E [y (0)] = :5 (outcome values refer to individual welfare of clinical outcomes). Suppose
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Figure 1.3: Evaluation of maximum regret of the plug-in (T = :5) statistical tretment
rule.

that a new treatment has been assigned to N = 1000 randomly selected patients. The

treatment has three potential outcomes: y (1) = 1 and y (1) = 0 correspond to the

positive and negative outcomes of the treatment on the condition that it is intended to

treat, while y (1) = �100 corresponds to a rare, dangerous side e¤ect. The set of feasible

treatment outcome distributions � includes all probability distributions with the

support f�100; 0; 1g that have a limited probability of the rare side e¤ect

P
 [y (1) = �100] � 1
1000

. Let �X be the sample average of the 1000 trial outcomes of the

new treatment.

First, let�s consider how well the di¤erent methods approximate the regret of a

plug-in statistical treatment rule �P � 1
�� �X > :5

��, which assigns the population to new
treatment if it outperforms the status quo treatment in the trial by any margin. Figure

1.3 displays the maximum regret of �P for a range of feasible values of the average
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Figure 1.4: Maximum Type I and Type II regret approximations for a range of threshold
statistical treatment rules.

treatment e¤ect �
. There are multiple feasible outcome distributions with the same �
,

so the lines represent the maximum aprroximated regret among those distributions.

Figure 1.4 shows maximum Type I and Type II regret approximations for threshold

decision rules with thresholds ranging from T = :45 to T = :55. The top lines show the

best upper bounds on maximum regret derived from large deviation bounds. That is,

the best of the bounds derived from Chebyshev�s, Hoe¤ding�s, or Berry-Esseen

inequalities. Each inequality is applied to all feasible values of distribution moments for

a given �. Chebyshev�s inequality provides the smallest bounds in this example despite

fairly large sample size because some of the feasible outcome distributions have large

range [�100; 1] and large third moments. It provides an upper bound of .0508 for both

maximum Type I (� � 0) and maximum Type II (� > 0) regret.
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The lower dotted lines show maximum regret computed using the normal

approximation to the distribution of �X based on the feasible values for the variance of

outcome distributions. The normal approximation suggests that both maximum Type I

and maximum Type II regret of �P equal to .0173.

The thick solid lines in Figures 1.3 and 1.4 show the maximum regret evaluated

numerically. The set of feasible distributions in this problem is simple enough

(two-dimensional and continuous) to be reliably approximated by a �nite set of

distributions. For this example, the probabilities P

�
�X � :5

�
and corresponding regret

values were evaluated on a grid of 60,000 distributions. These calculations show that

maximum Type I regret of the plug-in rule equals .0262, while the maximum Type II

regret equals .0205. Figure 1.4 shows that among threshold decision rules, minimax

regret is attained by the decision rule with threshold T = :51; rather than by the plug-in

rule, and its maximum regret equals .0230.

In this example, the large deviation bounds on maximum regret are much higher

than its actual values, while normal approximations are signi�cantly lower. Both of

them suggest that the plug-in decision rule minimizes maximum regret, even though its

maximum regret is 12% higher than the minimum attainable by a di¤erent threshold

decision rule. The di¤erence between these approximations and actual maximum regret

presents a bigger problem for the selection of trial sample size. Using the normal

approximation to evaluate maximum regret could lead the statistician to choose sample

size about 40% smaller than is necessary to make decisions with the desired maximum

regret. Using the large deviation bounds, on the other hand, could lead her to choose a

sample size almost �ve times larger than necessary.
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Asymptotic approximations and large deviation bounds provide convenient and

tractable methods for evaluating maximum regret of threshold decision rules. This

example shows, however, that even in realistic problems with fairly large sample size,

they could signi�cantly misrepresent the maximum regret of decision rules. Whenever

possible, such results should be veri�ed by direct computation or simulation.

1.6. Proofs

Lemma 1.1

I will prove the results in part a), the proof of part b) is analogous. Note that it is

w.l.o.g. to set � = 1 to simplify notation, then

�RType I (�T ) = max
h�0

f�h� (h� T )g .

For every �xed h < 0, �h� (h� T ) is a strictly decreasing function of T .

Furthermore, for any �xed T , �h� (h� T ) is a continuous function of h; with

lim
h!�1

f�h� (h� T )g = 0, and �h� (h� T ) > 0 for �1 < h < 0, thus �h� (h� T )

attains its maximum on h 2 (�1; 0). Therefore max
h�0

f�h� (h� T )g is a strictly

decreasing function of T .

To show that max
h�0

f�h� (h� T )g is continuous in T for all T 2 R, let�s �x T = T0

and pick some � > 0. Then there exists H < 0 such that h (h� T ) > 1 and h� T < 0
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for all h < H and for all T 2 [T0 ��; T0 +�]. Then for such h and T :

d

dh
f�h� (h� T )g = �� (h� T )� h� (h� T ) >

>
� (h� T )
h� T � h� (h� T )

= � (h� T ) 1� h (h� T )
h� T > 0.

The second line follows from an well known inequality for the normal distribution:

1� � (�) <
� (�)

�
for � > 0

) � (�) < �� (�)
�

for � < 0.

Since d
dh
f�h� (h� T )g > 0 for all h < H and all T 2 [T0 ��; T0 +�], the

maximum of �h� (h� T ) over h for each T is achieved on the closed interval h 2 [H; 0]:

The derivative of �h� (h� T ) with respect to T is bounded on the rectangle

(h; T ) 2 [H; 0]� [T0 ��; T0 +�], thus max
h�0

f�h� (h� T )g = max
h2[H;0]

f�h� (h� T )g is

continuous in T at T0.

For any T < 0

max
h�0

f�h� (h� T )g � �T� (0) = �T
2

(by substituting h = T ), thus max
h�0

f�h� (h� T )g ! 1 as T ! �1.

For any T > 0 and h < 0, � (h� T ) � 1
(h�T )2 by Chebyshev�s inequality. Also,

di¤erentiation of � h
(h�T )2 with respect to h shows that maxh�0

n
� h
(h�T )2

o
is achieved at
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h = �T and equals 1
4T
. Then

max
h�0

f�h� (h� T )g � max
h�0

�
� h

(h� T )2
�
=
1

4T

and 1
4T
! 0; thus max

h�0
f�h� (h� T )g ! 0 as T !1. �

Proposition 1.2

a) If T > 0, then the maximum Type II regret of threshold decision rule �T over the

set � equals

max

2�:�
>0

R (�T ; 
) = max

2�:�
>0

�
�
P


�
�X � T

�	
= max


2�:�
>0

(
�
�

"p
N

�

(T � �
)

#)

= max
�>0

(
� � max

�2[�;��]
�

"p
N

�
(T � �)

#)

=
��p
N
max
h>0

�
h � max

�2[�;��]
�
h ��
�
(T � � h)

i�
=

��p
N
max

�
max

h2(0;T �)

�
h�

�
��

�
(T � � h)

��
;max
h�T �

(h� [T � � h])
�

=
��p
N
max
h�T �

fh� [T � � h]g

The third line uses substitutions h �
p
N
��
� and T � �

p
N
��
T . The fourth line uses the fact

that max
�2[�;��]

�
�
��
�
(T � � h)

�
= �

h
��
�
(T � � h)

i
for h < T � and

max
�2[�;��]

�
�
��
�
(T � � h)

�
= � [T � � h] for h � T �. The last equality follows from the

condition (1.8).
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Similar derivation for maximum Type II regret over the set �� shows that for T > 0:

max

2��:�
>0

R (�T ; 
) = max
�>0

(
� � �

"p
N

��
(T � �)

#)

=
��p
N
max
h>0

fh� [T � � h]g

=
��p
N
max

�
max

h2(0;T �)
(h� [T � � h]) ;max

h�T �
(h� [T � � h])

�
=

��p
N
max
h�T �

fh� [T � � h]g .

The last equality holds because � [T � � h] � �
h
��
�
(T � � h)

i
for h < T �, thus condition

(1.8) implies max
h2(0;T �)

(h� [T � � h]) � max
h�T �

(h� [T � � h]).

If T � 0, then T � � < 0 for all � > 0, thus max
�2[�;��]

�
hp

N
�
(T � �)

i
= �

hp
N
��
(T � �)

i
and

max

2�:�
>0

R (�T ; 
) = max
�>0

(
� � max

�2[�;��]
�

"p
N

�
(T � �)

#)

= max
�>0

(
� � �

"p
N

��
(T � �)

#)
= max


2��:�
>0
R (�T ; 
) .

The proof is analogous for Type I regret.

b) Suppose that �0
�
�X;S2

�
has both lower maximum Type I regret and lower

maximum Type II regret than �T over the set �. Since �T achieves maximum Type I

and II regret over the subset ��, it follows that

sup

2��:�
�0

R (�0; 
) � sup

2�:�
�0

R (�0; 
) < max

2�:�
�0

R (�T ; 
) = max

2��:�
�0

R (�T ; 
) ;

sup

2��:�
>0

R (�0; 
) � sup

2�:�
>0

R (�0; 
) < max

2�:�
>0

R (�T ; 
) = max

2��:�
>0

R (�T ; 
) :
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Since the class of threshold decision rules is essentially complete for the problem with

�xed variance, there must be a threshold decision rule �T 0 � 1
�� �X > T 0

�� such that
R (�0; 
) � R (�T 0 ; 
) for all 
 2 ��. Then

sup

2��:�
�0

R (�T 0 ; 
) � sup

2��:�
�0

R (�0; 
) < max

2��:�
�0

R (�T ; 
) ;

sup

2��:�
>0

R (�T 0 ; 
) � sup

2��:�
>0

R (�0; 
) < max

2��:�
>0

R (�T ; 
) ;

which contradicts the conjecture that �T is a solution to the minimax regret, asymmetric

minimax regret, or limited type I regret problem over the feasible set ��. Thus �0 cannot

have both lower maximum Type I and lower maximum Type II regret than �T . �

Lemma 1.3

I will provide the proof for �RType I (�), the proof for �RType II (�) is analogous.

For a �xed ��, R
�
��; 

�
is a bounded continuous function of p
 on the closed interval

[a; p0], thus attains its maximum. Also,

jD (�1)�D (�2)j < ") sup

:p
2[a;p0]

jR (�1; 
)�R (�2; 
)j < ",

thus max

:p
2[a;p0]

R (�; 
) is a continuous function of D (�).

For any �xed p
 2 (0; p0),

R (�T ;�; 
) = �� �
(
1� � �B (T;N; p
)�

X
T<n�N

B (n;N; p
)

)

is a strictly decreasing function of D (�) = T + (1� �). For p
 = 0, R (�T ;�; 
) is also a

strictly decreasing function of D (�) for D (�) 2 [0; 1] and R (�T ;�; 0) = 0 for D (�) � 1.

If follows that max

:p
2[a;p0]

R (�; 
) is a strictly decreasing function of D (�).
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If D (�) = N + 1, then T = N; � = 0, thus R (�T ;�; 
) = 0 for any p
 2 (0; p0). �

Proposition 1.4

It follows from lemma 1.3 that maximum regret of the minimax regret treatment

rule lies between maximum Type I and maximum Type II regret of the plug-in

treatment rule:

min
�
�RType I (�P ) ; �RType II (�P )

�
� max


2�
R (�M ; 
) � max

�
�RType I (�P ) ; �RType II (�P )

�
.

If
q

N
p0(1�p0)

�RType I (�P ) and
q

N
p0(1�p0)

�RType II (�P ) both converge to max
h>0

[h� (�h)],

then it follows that max

2�

R (�M ; 
) converges to the same limit. I will establish thatq
N

p0(1�p0)
�RType II (�P )! max

h>0
[h� (�h)], the proof for

q
N

p0(1�p0)
�RType I (�P ) is

analogous.

To simplify notation, I will use the following substitutions:

� =
q
p
 (1� p
);

�0 =
p
p0 (1� p0); and

h =

p
N

�0
(p
 � p0) .

I will use the Berry-Esseen inequality to show that
p
N
�0
R
�
�P ; p0 +

�0p
N
h
�
uniformly

converges to h� (�h) for h 2
�
0; 3

2
��20
�
as N !1. Since the function h� (�h) reaches

its maximum at h � :752 and 3
2
��20 � 6, max

h>0
[h� (�h)] = max

h2(0; 32�
�2
0 ]
[h� (�h)]. I use

Chebyshev�s inequality to show that
p
N
�0
R
�
�P ; p0 +

�0p
N
h
�
< max

h>0
[h� (�h)] for

h > 3
2
��20 .
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For any " > 0, there is N1 such that for all N > N1:

(1.9) sup
h2(0; 32�

�2
0 ]

������h�0
�

�
� � (�h)

��� < �20
3
",

because the standard normal c.d.f. � has a bounded derivative, �0 6= 0, and

sup
h2(0; 32�

�2
0 ]

�
1� �0

�

�
! 0 as N !1.

Application of the uniform Berry-Esseen inequality to X, which is a sum of N

independent Bernoulli random variables with mean p
 (cf. Shiryaev (1995, p. 63)), yields�����P

 p

N

�

�
X

N
� p


�
� z
!
� � (z)

����� � p2
 + (1� p
)
2p

p
 (1� p
)
p
N
,

for any z 2 R.where � is the standard normal c.d.f.

There exists N2 such that for N > N2; h 2
�
0; 3

2
��20
�
implies p
 2

�
p0;

1+p0
2

�
. The

function
p2
+(1�p
)2p
p
(1�p
)

is continuous and bounded on p
 2
�
p0;

1+p0
2

�
since p0 > 0 and

1+p0
2
< 1. Let B � max

p
2[p0; 1+p02 ]

p2
+(1�p
)2p
p
(1�p
)

. Then for N > N2 and h 2
�
0; 3

2
��20
�

(1.10)

�����P

 p

N

�

�
X

N
� p


�
� z
!
� � (z)

����� � Bp
N
.

There exists N3 > N2 such that Bp
N
<

�20
3
" for N > N3.

Since

P


 p
N

�

�
X

N
� p


�
� ��0

�
h

!
= P


 p
N

�

�
X

N
� p


�
� �

p
N

�
(p
 � p0)

!
=

= P


�
X

N
� p0

�
,
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letting z = ��0
�
h in (1.10) yields for N > N3

sup
h2(0; 32�

�2
0 ]

����P
 �XN � p0
�
� �

�
��0
�
h
����� � �20

3
".

Combining this result wtih (1.9) shows that for N > max(N1; N3)

sup
h2(0; 32�

�2
0 ]

����P
 �XN � p0
�
� � (�h)

���� �

sup
h2(0; 32�

�2
0 ]

�������0
�
h
�
� � (�h)

���+ sup
h2(0; 32�

�2
0 ]

����P
 �XN � p0
�
� �

�
��0
�
h
����� � 2

3
�20",

and, since R
�
�P ; p0 +

�0p
N
h
�
= �0p

N
h � P


�
X
N
� p0

�
for h > 0;

sup
h2(0; 32�

�2
0 ]

�����
p
N

�0
R

�
�P ; p0 +

�0p
N
h

�
� h� (�h)

����� =

sup
h2(0; 32�

�2
0 ]

����h � P
 �XN � p0
�
� h� (�h)

���� �

3

2
��20 sup

h2(0; 32�
�2
0 ]

����P
 �XN � p0
�
� � (�h)

���� � ".

The one-sided Chebyshev�s inequality shows that

P


�
X

N
� po

�
= P


�
X

N
� p
 � p0 � p


�
� 1

1 + N
�2
(p
 � p0)2

� 1

4�20h
2
,
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where the last inequality uses substitution p
 � p0 = �0p
N
h and the second one uses

�2 � 1
4
. For h > 3

2
��20 this implies

p
N

�0
R

�
�P ; p0 +

�0p
N
h

�
= h � P


�
X

N
� p0

�
� h � 1

4�20h
2
� 1

6
< max

h>0
[h� (�h)] .

Thus, for N > max (N1; N3)�����max
:p
>0

p
N

�0
R (�P ; 
)�max

h>0
[h� (�h)]

����� < ":
�

Proposition 1.5

Let V
 denote the variance of a random variable in state of the world 
 and let

p
 � E
 [y (1)]. I will consider the case when p
 > p0, the proof for p
 � p0 is analogous.

For all 
 such that V
 [y (1)] <
�2h
9
(thus V


h
1
N

PN
i=1 xi � p


i
<

�2h
9N
) the one-sided

Chebyshev�s inequality shows that

P


 
1

N

NX
i=1

xi � p0

!
= P


 
1

N

NX
i=1

xi � p
 � � (p
 � p0)
!
� 1

1 + 9N
�2h
(p
 � p0)2

.

Applying the result to the formula for regret of the plug-in rule �P yields

R (�P ; 
) = (p
 � p0) � P


 
1

N

NX
i=1

xi � p0

!
� �h

3
p
N
�

q
9N
�2h
(p
 � p0)

1 + 9N
�2h
(p
 � p0)2

� �h

6
p
N
.

To obtain the last inequality, observe that max
h>0

h
1+h2

= 1
2
.
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For all 
 such that p
 � p0 � 6 �hpN , also apply Chebyshev�s inequality, using the fact

that V

h
1
N

PN
i=1 xi � p


i
<

�2h
N
:

P


 
1

N

NX
i=1

xi � p0

!
= P


 
1

N

NX
i=1

xi � p
 � � (p
 � p0)
!
� 1

1 + N
�2h
(p
 � p0)2

.

Applying the result to the formula for regret of the plug-in rule �P yields

R (�P ; 
) = (p
 � p0) � P


 
1

N

NX
i=1

xi � p0

!
� �hp

N
�

q
N
�2h
(p
 � p0)

1 + N
�2h
(p
 � p0)2

� �h

6
p
N
.

The last inequality holds because
q

N
�2h
(p
 � p0) � 6 and max

h>6

h
1+h2

< 1
6
.

For all 
 such that p
 � p0 < 6 �hpN and V
 [y (1)] 2
h
�2h
9
; �2h

i
, let�s apply the

Berry-Esseen inequality (cf. Shiryaev (1995, p. 374)) to the sum of N i.i.d. random

variables (xi � p
), for any z 2 R:

(1.11)

�����P

 p

Np
V
 [y (1)]

 
1

N

NX
i=1

xi � p


!
� z
!
� � (z)

����� � E
 jy (1)� p
j3

V
3=2

 [y (1)]

p
N
.

Substitute z =
p
Np

V
 [y(1)]
(p0 � p
) into (1.11) and it becomes

�����P

 
1

N

NX
i=1

xi � p0

!
� �

 p
Np

V
 [y (1)]
(p0 � p
)

!����� � E
 jy (1)� p
j3

V
3=2

 [y (1)]

p
N
.

Since y (1)� p
 2 [0; 1], E
 jy (1)� p
j3 � V
 [y (1)] and V
 [y (1)] � �2h
9

E
 jy (1)� p
j3

V
3=2

 [y (1)]

p
N
� 1

V
1=2

 [y (1)]

p
N
� 3

�h
p
N
,
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thus �����P

 
1

N

NX
i=1

xi � p0

!
� �

 p
Np

V
 [y (1)]
(p0 � p
)

!����� � 3

�h
p
N
.

Applying the result to the regret formula for �P yields

R (�P ; 
) = (p
 � p0) � P


 
1

N

NX
i=1

xi � p0

!
�

� (p
 � p0) �
 
�

 p
Np

V
 [y (1)]
(p0 � p
)

!
+

3

�h
p
N

!
�

�
p
V
 [y (1)]p
N

max
h>0

h� (�h) + 3 (p
 � p0)
�h
p
N

�

� �hp
N
max
h>0

h� (�h) + 18
N
.

The last inequality uses p
 � p0 < 6 �hpN .

The three cases considered are exhaustive of all states of the world 
 with p
 > 0. If

V
 [y (1)] <
�2h
9
, or V
 [y (1)] � �2h

9
and p
 � p0 � 6 �hpN , then

p
NR (�P ; 
) �

�h
6
< �h �max

h>0
[h� (�h)] .

If V
 [y (1)] � �2h
9
and p
 � p0 < 6 �hpN , then

p
NR (�P ; 
) � �h �max

h>0
h� (�h) + 18p

N
,

thus
p
N sup


2�
R (�P ; 
) � �h �max

h>0
[h� (�h)] + o (1). �
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CHAPTER 2

Admissible Treatment Rules for a Risk-Averse Planner with

Experimental Data on an Innovation

This chapter was cowritten with Charles F. Manski and originally published in

Journal of Statistical Planning and Inference c
 2007 Elsevier B.V.

2.1. Introduction

Problems of choice between a status quo treatment and an innovation occur often in

practice. In the medical arena, the status quo may be a standard treatment for a health

condition and the innovation may be a new treatment proposed by researchers.

Historical experience administering the status quo treatment to populations of patients

may have made its properties well understood. In contrast, the properties of the

innovation may be uncertain, the only available information deriving from a randomized

clinical trial. Then choice between the status quo treatment and the innovation is a

statistical decision problem.

This chapter studies the admissibility of treatment rules when the decision maker is

a planner (e.g., a physician) who must choose treatments for a population of persons

who are observationally identical but who may vary in their response to treatment. We

focus on the relatively simple case where treatments have binary outcomes, which we

label success and failure. Then the feasible treatment rules are the functions that map
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the number of experimental successes into a treatment allocation specifying the fraction

of the population who receive each treatment.

Section 2.2 formalizes the planner�s problem and reviews the case where the

objective of the planner is to maximize the population rate of treatment success. In this

setting, a theorem of Karlin and Rubin (1956) shows that the admissible rules are ones

which assign all members of the population to the status quo treatment if the number of

experimental successes is below a speci�ed threshold and all to the innovation if the

number of successes is above the threshold. An interior fractional allocation of the

population is possible in an admissible rule only when the number of experimental

successes exactly equals the threshold. Karlin and Rubin called this class of treatment

rules monotone, but we will refer to them as KR-monotone.

In Section 2.3, we suppose that the objective of the planner is to maximize a

concave-monotone function f (�) of the rate of treatment success. We show that this

seemingly modest generalization of the welfare function is consequential. Now

admissible treatment rules need not be KR-monotone; in fact, KR-monotone rules may

be inadmissible. However, a weaker notion of monotonicity remains relevant. De�ne a

fractional monotone rule to be one in which the fraction of the population assigned to

the innovation weakly increases with the experimental success rate.We show that the

class of fractional monotone rules is essentially complete. That is, given any rule which

is not fractional monotone, there exists a fractional monotone rule that performs at least

as well in all feasible states of nature. If f (�) is concave and strictly monotone, the class

of fractional monotone rules is complete. That is, given any rule which is not fractional
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monotone, there exists a fractional monotone rule that performs at least as well in all

feasible states of nature and better in some state of nature.

Further �ndings emerge when the welfare function has weak curvature. Let f (�) be

di¤erentiable with derivative function g (�). Suppose that, for a given positive integer M ,

the quantity
�
x (1� x)�1

�M
g (x) weakly increases with x. De�ne an M-step monotone

rule to be a fractional monotone rule that gives an interior fractional treatment

assignment for no more than M consecutive values of the number of experimental

successes. This de�nition extends the class of KR-monotone rules, which is the special

case with M = 1. We show that the class of M -step monotone rules is essentially

complete if the above conditions hold. This class is complete if f (�) is strictly concave

or if
�
x (1� x)�1

�M
g (x) is strictly increasing. We also show that the class of

KR-monotone rules is minimal complete if M = 1 and if f (�) is strictly concave or�
x (1� x)�1

�M
g (x) is strictly increasing.

Section 2.4 investigates particular treatment rules.We �nd that Bayes rules and the

minimax-regret rule depend on the curvature of the welfare function. These rules are

KR-monotone if the curvature is su¢ ciently weak. However, they deliver interior

fractional treatment allocations if the curvature is su¢ ciently strong. Computation of

Bayes rules is typically straightforward. Computation of a minimax-regret rule is simple

when this rule is KR-monotone but is more challenging otherwise.

Our consideration of planning problems where welfare is a nonlinear function of the

rate of treatment success appears to be new to research studying treatment choice using

experimental data. Previous research has examined planning problems in which

experimental �ndings are used to inform treatment choice; see, for example, Canner
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(1970), Cheng et al. (2003), and Manski (2004, 2005). However, these and (as far as we

are aware) other studies have invariably assumed without comment that welfare is the

rate of treatment success.

From a decision theoretic perspective, concave-monotone welfare functions are

intriguing because they sometimes yield the conclusion that planners should fractionally

allocate observationally identical persons across di¤erent treatments. It has been

common to presume that a planner should treat observationally identical persons

identically. The analysis in this chapter shows that this presumption sometimes is

inappropriate when a risk averse planner uses experimental data to inform treatment

choice.

From a substantive perspective, consideration of concave-monotone functions of the

success rate is interesting because, in expected utility theory, such functions imply

distaste for mean-preserving spreads of gambles and thus express risk aversion. Public

discourse on health matters, although not entirely coherent, suggests strong risk

aversion. This is evident in the ancient admonition of the Hippocratic Oath that a

physician should "First, do no harm." It is also evident in the drug approval process of

the U.S. Food and Drug Administration, which requires that the manufacturers of

pharmaceuticals demonstrate "substantial evidence of e¤ect" for their products (see

Gould, 2002). We discuss this matter further in the concluding Section 2.5, which

considers the implications of our analysis for treatment choice in practice.
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2.2. Background

2.2.1. The Planning Problem

The basic concepts are as in Manski (2004, 2005). The planner�s problem is to choose

treatments from a �nite set T of mutually exclusive and exhaustive treatments. Each

member j of the treatment population, denoted J , has a response function

yj (�) : T ! Y mapping treatments t 2 T into outcomes yj (t) 2 Y . The population is a

probability space (J;
; P ), and the probability distribution P [y (�)] of the random

function y (�) : T ! Y describes treatment response across the population. The

population is "large," in the sense that J is uncountable and P (j) = 0; j 2 J .

In this chapter, outcomes are binary with yj (t) = 1 denoting success and yj (t) = 0

failure if person j receives treatment t. There are two treatments, t = a denoting the

status quo and t = b the innovation. The population success rates if everyone were to

receive the same treatment are � � P [y (a) = 1] and � � P [y (b) = 1], respectively.

Consider a rule that assigns a fraction � of the population to treatment b and the

remaining 1� � to treatment a. The population success rate under this fractional rule is

(2.1) � � (1� �) + � � � = �+ (� � �) �:

Welfare is f [�+ (� � �) �] ; where f (�) is an increasing, concave transformation of the

success rate.

The optimal treatment rule is obvious if (�; �) are known. The planner should

choose � = 1 if � > � and � = 0 if � < �; all values of � yield the same welfare if � = �.

The problem of interest is treatment choice when (�; �) are only partially known.
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2.2.2. The Empirical Evidence and Admissible Treatment Rules

Suppose that historical experience reveals � but not �. The available evidence on �

comes from a randomized experiment, where N subjects are drawn at random and

assigned to treatment b. Of these subjects, a number n experience outcome y (b) = 1 and

the remaining N � n experience y (b) = 0. The outcomes of all subjects are observed.

In this setting, the sample size N indexes the sampling process and the number n of

experimental successes is a su¢ cient statistic for the sample data. The feasible

statistical treatment rules are the functions z (�) : [0; :::; N ]! [0; 1] that map the number

of experimental successes into a treatment allocation. Thus, for each value of n, rule z

allocates a fraction z (n) of the population to treatment b and the remaining 1� z (n) to

treatment a.

Following Wald (1950), we evaluate a statistical treatment rule by its expected

performance across repeated samples. Let p (n; �) � C (N; n) � �n (1� �)N�n denote the

binomial probability of n successes in N trials, where C (N; n) � N ! [n! � (N � n)!]�1.

Then the expected welfare yielded by rule z (�) across repeated samples is

(2.2) W (z; �) �
NX
n=0

p (n; �) � f [�+ (� � �) z (n)] :

Expected welfare is a function of �, which is unknown. Let B index the values of that

the planner deems feasible. We assume that 0 < � < 1 and B includes at least one value

smaller than � and at least one value greater than �. Rule z0 (weakly) dominates rule z

if W (z; �) � W (z0; �) for all � 2 B and W (z; �) < W (z0; �) for some � 2 B. Rule z is



www.manaraa.com

66

admissible if there exists no other rule z0 that dominates z; if a dominating rule exists, z

is inadmissible.

2.2.3. Admissible Rules for a Risk-Neutral Planner

Manski (2005, Chapter 3) considers the case in which welfare is the population rate of

treatment success; thus, f (�) is the identity function. Then the expected welfare of rule

z is

(2.3) W (z; �) = �+ (� � �) � E� [z (n)] ;

where E� [z (n)] =
P

n p (n; �) � z (n). Rule z is admissible if there exists no z0 such that

(� � �) � E� [z (n)� z0 (n)] � 0 for all � 2 B and (� � �) � E� [z (n)� z0 (n)] < 0 for

some � 2 B.

A KR-monotone treatment rule, de�ned in Karlin and Rubin (1956), has the form

(2.4)

z (n) = 0 for n < k;

z (n) = � for n = k;

z (n) = 1 for n > k;

where 0 � k � N and 0 � � � 1. Thus, a KR-monotone rule allocates all persons to

treatment a if n is smaller than the speci�ed threshold k, a fraction � to treatment b if

n = k, and all to treatment b if n is larger than k.

Manski (2005, Proposition 3.1) applies Karlin and Rubin (1956, Theorem 4) to show

that the class of KR-monotone rules is minimal complete if B excludes the extreme

values 0 and 1. That is, the admissible rules and the KR-monotone rules coincide.
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Everywhere fractional treatment rules are inadmissible even when the only empirical

evidence about the innovation is the outcome of a single experiment. Let B exclude the

extreme values f0; 1g and consider a sample of size 1. If N = 1, there are two possible

values for the threshold k and, hence, two types of KR-monotone rules. Setting k = 0

yields rules in which z (0) can take any value and z (1) = 1. Setting k = 1 yields rules in

which z (0) = 0 and z (1) can take any value.

2.3. Admissible Treatment Rules for Risk-Averse Planners

Determination of the admissible treatment rules when the function f (�) is

nontrivially concave is a challenging problem. However, there are ways to make

progress. This section presents �ndings that shed some light on the matter. Section

2.3.1 shows that the class of fractional monotone rules is essentially complete for all

concave-monotone f (�). This class is complete if f(�) is concave and strictly monotone.

Section 2.3.2 shows that the class of M -step monotone rules is essentially complete

for all di¤erentiable concave-monotone f (�) such that
�
x (1� x)�1

�M
g (x) is weakly

increasing in x. This class is complete if f (�) is also strictly concave or�
x (1� x)�1

�M
g (x) is strictly increasing in x. Section 2.3.3 shows that the class of

KR-monotone rules is minimal complete if M = 1 and f (�) is also strictly concave or if�
x (1� x)�1

�M
g (x) is strictly increasing in x. However, we show that KR-monotone

rules can be inadmissible if f (�) is su¢ ciently curved.
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2.3.1. The Fractional Monotone Rules are an Essentially Complete Class

The binomial density function possesses the strict form of the monotone-likelihood ratio

property: (n > n0; � > �0)) p(n; �)=p(n; �0) > p(n0; �)=p(n0; �0). Thus, larger values of

n are unambiguously evidence for larger values of �. It is therefore reasonable to

conjecture that good treatment rules are the ones that make the fraction of the

population allocated to treatment b increase with n.

The results of Karlin and Rubin (1956) show that a strong form of this conjecture is

correct if f(�) is linear in the population success rate. The Karlin and Rubin theorems

do not apply to nonlinear f(�). Nevertheless, the conjecture remains correct in the

weaker sense that the class of fractional monotone treatment rules is essentially

complete for all concave-monotone welfare functions and complete when f(�) is concave

and strictly monotone. Formally, we say that a treatment rule z is fractional monotone

if n < n0 ) z(n) � z(n0). Proposition 2.1 proves the result.

Proposition 2.1. If f(�) is weakly increasing and concave, the class of fractional

monotone rules is essentially complete. If f(�) is also strictly increasing, the class of

fractional monotone rules is complete.

Proof. Suppose that z is not fractional monotone, so z(n) < z(n0) for some n > n0.

Consider replacing z with the following treatment rule z�:

z� (n) � z� (n0) � p (n;�)

p (n;�) + p (n0;�)
z (n) +

p (n0;�)

p (n;�) + p (n0;�)
z (n0) ;

z� (m) � z (m) ; 8m =2 fn; n0g :
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For any value of �,

W (z�; �)�W (z; �) = p (n; �) � ff [�+ (� � �) z� (n)]� f [�+ (� � �) z (n)]g

+p (n0; �) � ff [�+ (� � �) z� (n0)]� f [�+ (� � �) z (n0)]g :(2.5)

The function f(�) is concave and z�(n) is a convex combination of z(n) and z(n0). Hence,

f [�+ (� � �) z� (n)] �

p (n;�)

p (n;�) + p (n0;�)
f [�+ (� � �) z (n)] + p (n0;�)

p (n;�) + p (n0;�)
f [�+ (� � �) z (n0)] :

The same inequality holds for f [�+ (� � �) z� (n0)]. Substituting these inequalities into

(2.5) and rearranging terms yields

W (z�; �)�W (z; �) �

p (n; �) � p (n0;�)� p (n0; �) � p (n;�)
p (n;�) + p (n0;�)

� ff [�+ (� � �) z (n0)]� f [�+ (� � �) z (n)]g :

The following inequalities use the monotone-likelihood ratio property and the fact that

z(n) < z(n0):

� < �) p (n; �) � p (n0;�)� p (n0; �) � p (n;�) < 0;

f [�+ (� � �) z (n0)]� f [�+ (� � �) z (n)] � 0;

� > �) p (n; �) � p (n0;�)� p (n0; �) � p (n;�) > 0;

f [�+ (� � �) z (n0)]� f [�+ (� � �) z (n)] � 0:
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It follows that W (z�; �) � W (z; �) for all � 2 B. If f(�) is strictly increasing, the

right-hand side inequalities are strict and W (z�; �) > W (z; �) for all � 2 Bn f�g.

Given any rule z that is not fractional monotone, we can iteratively apply the

transformation described above to all pairs (n0; n) for which z(n0) > z(n), in the

following order: (n0; n) = (1; 2); (1; 3); :::; (1; N); (2; 3); (2; 4); :::; (N � 1; N). The result is

a fractional monotone treatment rule that performs at least as well as z for all values of

� and that dominates z if f(�) is strictly increasing. �

Proposition 2.1 implies that a risk-neutral or risk-averse planner can restrict

attention to fractional monotone treatment rules; there is no reason to contemplate

other rules. The proposition does not imply that all fractional monotone rules are

worthy of consideration. Indeed, we already know that a risk-neutral planner can

restrict attention to rules that are KR-monotone.

2.3.2. M-Step Monotone Rules

It appears that no result stronger than Proposition 2.1 can be proved without placing

restrictions on the shape of f(�) beyond monotonicity and concavity. This section shows

that Proposition 2.1 can be strengthened considerably if f(�) is restricted to be

di¤erentiable with derivative function g(�) that does not decrease too rapidly.

We de�ne a treatment rule to be M -step monotone if n < n0 ) z(n) � z(n0) and, for

a given positive integer M , n+M � n0 ) z(n) = 0 or z(n0) = 1. Suppose that�
x (1� x)�1

�M
g (x) weakly increases with x. With this restriction on the curvature of

f(�), the class of M -step monotone rules is essentially complete, whatever the sample
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size N may be. Moreover, this class is complete if f(�) is strictly concave or if�
x (1� x)�1

�M
g (x) strictly increases with x. Proposition 2.2 proves the result.

Proposition 2.2. Let f(�) be weakly increasing, concave and di¤erentiable on

(inf fBg ; sup fBg), with derivative g(�). If
�
x (1� x)�1

�M
g (x) weakly increases with x,

then the M-step monotone rules are an essentially complete class. If f(�) is also strictly

concave or if
�
x (1� x)�1

�M
g (x) strictly increases with x, then the M-step monotone

rules are a complete class.

Proof. Proposition 2.1 showed that the class of fractional monotone treatment rules

is essentially complete. Suppose that z is fractional monotone but not M -step

monotone. We will iteratively construct an M -step monotone rule that performs at least

as well as z. Part A of the proof describes the content of each step of the iteration. Part

B gives the iteration. Parts A and B show that the class of M -step monotone rules is

essentially complete. Part C of the proof shows that this class is complete if f(�) is

strictly concave or if
�
x (1� x)�1

�M
g (x) strictly increases with x.

(A) Suppose that z is not M -step monotone, with z(n) > 0 and z(n0) < 1 for some

(n; n0) such that n+M � n0. We will compare z to an alternative treatment rule z0 in

which z(n) and z(n0) are replaced by

z0(n) = z(n)� p(n0;�) � p�1(n;�) � [z0(n0)� z(n0)] ;

z0 (n0) = min
�
1; z (n0) + p�1 (n0;�) � p (n;�) � z (n)

�
:(2.6)
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Observe that rule z0 has either z0(n) = 0 or z0(n0) = 1. We will show that z0 performs at

least as well as z. It dominates z if f(�) is strictly concave or if
�
x (1� x)�1

�M
g (x)

strictly increases with x.

To show this requires two preliminary steps. First, weak concavity of f(�) implies

that

0 � x < y � 1; � 6= �)

f [�+ (� � �)x]� f [�+ (� � �) y] � g (�) � (� � �) � (x� y) ;

0 � y < x � 1; � 6= �)

f [�+ (� � �)x]� f [�+ (� � �) y] � g (�) � (� � �) � (x� y) :(2.7)

These inequalities are strict if f(�) is strictly concave.

Second, p(n0;x)p�1(n;x) � g(x) weakly increases with x for n+M � n0. This holds

because

(2.8)

p(n0;x)p�1(n;x) � g(x) = [C (N; n0) =C (N; n)] �
�
x (1� x)�1

�n0�n�M � �x (1� x)�1�M g (x) :
The �rst term on the right-hand side is a positive constant. The second term is a

positive and weakly increasing function on (0; 1). The last term is positive and weakly

increasing by assumption. If
�
x (1� x)�1

�M
g (x) is strictly increasing, then so is

p(n0;x)p�1(n;x) � g(x).
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Now consider the di¤erence in welfare between rules z0 and z. All rules yield the

same welfare if � = �. For � 6= �,

W (z0; �)�W (z; �) = p (n0; �) � ff [�+ (� � �) z0 (n0)]� f [�+ (� � �) z (n0)]g

+p (n; �) � ff [�+ (� � �) z0 (n)]� f [�+ (� � �) z (n)]g

� p (n0; �) � g (�) � (� � �) � [z0 (n0)� z (n0)]

+p (n; �) � g (�) � (� � �) � [z0 (n)� z (n)]

= (� � �) �
�
p(n0; �)p�1(n; �) � g(�)� p(n0;�)p�1(n;�) � g(�)

�
�p (n; �) � [z0 (n0)� z (n0)]

� 0(2.9)

The �rst inequality follows from (2.7). The second equality follows from (2.6). The last

inequality holds for all � because the �rst two terms have the same sign when they do

not equal zero and the last two terms are strictly positive. If f(�) is strictly concave or if�
x (1� x)�1

�M
g (x) is strictly increasing, then W (z0; �)�W (z; �) > 0 for all � 6= �.

(B) We iteratively apply the transformation described above to all pairs (n; n0) for

which n+M � n0, z(n) > 0 and z(n0) < 1, in this order:

(n; n0) = (0; N); (0; N � 1); :::; (0;M); (1; N); (1; N � 1); :::; (1; 1 +M); :::; (N �M;N).

We show that, performed in this order, each iteration preserves fractional monotonicity

of the treatment rule and that the outcome is an M -step rule.
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Consider the �rst iteration, which has n = 0 and n0 = N . If z(0) > 0 and z(N) < 1,

the iteration either reduces z(0) to zero or increases z(N) to one. Both results preserve

fractional monotonicity.

Next let n = 0 and n0 < N . The preceding iteration has considered the pair

(0; n0 + 1); thus, z(0) > 0 implies that z(n0 + 1) = 1. The current iteration either reduces

z(0) to zero or increases z(n0) to one. Again, both results preserve fractional

monotonicity.

After completion of all iterations with n = 0, we either have that z(0) > 0 or

z(0) = 0. If z(0) > 0, then z(n0) = 1 for all n0 �M . Hence, an M -step rule has been

achieved and no further iteration is necessary.

If z(0) = 0, we perform the iterations for n = 1. As in the �rst round, these

iterations preserve fractional monotonicity and deliver an M -step rule if z(1) > 0 at

their completion. If z(1) = 0, we perform the iterations for n = 2; 3; :::; continuing

through further rounds of iteration until an M -step rule is achieved.

The ultimate result of the iterative process is an M -step monotone rule that

performs at least as well as z for all values of �. Hence, the class of M -step monotone

rules is essentially complete.

(C) If f(�) is strictly concave or
�
x (1� x)�1

�M
g (x) is strictly increasing, the

treatment rule obtained through the iterated modi�cation dominates the original rule z.

Thus, the M -step monotone rules form a complete class. �
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2.3.3. KR-Monotone Rules Revisited

The KR-monotone rules are the M -step monotone rules with M = 1. Thus, Proposition

2.2 shows that the class of KR-monotone rules is essentially complete if�
x (1� x)�1

�
g (x) weakly increases with x. This class is complete if f(�) is strictly

concave or if
�
x (1� x)�1

�
g (x) strictly increases with x. For example, Proposition 2.2

shows that the class of KR-monotone rules is complete if f(x) = log(x). A welfare

function that just barely satis�es the conditions of Proposition 2.2 is log(x)� x, whose

derivative is x�1(1� x).

This section develops further properties of the KR-monotone rules. To begin,

Proposition 2.3 shows that if f(�) is strictly increasing and the class of KR-monotone

rules is complete, then this class is minimal complete.

Proposition 2.3. Let f(�) be strictly increasing. If the class of KR-monotone rules

is essentially complete, then every KR-monotone rule is admissible. If the class of

KR-monotone rules is complete, then it is minimal complete.

Proof. Suppose that z is an inadmissible KR-monotone rule. Then there exists a

rule z0 that dominates z. By assumption, the KR-monotone rules are an essentially

complete class. So there exists a KR-monotone rule z0 6= z that dominates z. However,
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one of the following two conditions must hold if f(�) is strictly increasing:

8n : z(n) � z0(n); with strict inequality for some n )

W (z; �) > W (z0; �) ; � 2 (�; 1) ;

8n : z (n) � z0 (n) ; with strict inequality for some n )

W (z; �) > W (z0; �) ; � 2 (0; �) :(2.10)

Therefore, z0 cannot dominate z. Thus, all KR-monotone rules are admissible.

If the class of KR-monotone rules is complete, there exist no admissible rules outside

of this class. Hence, the class of KR-monotone rules is minimal complete. �

Combining Propositions 2.2 and 2.3 shows that Theorem 4 of Karlin and Rubin

(1956) extends to welfare functions that are concave-monotone with su¢ ciently weak

curvature. We state this result as:

Proposition 2.3, Corollary. Let f(�) be strictly increasing and di¤erentiable on

(inf fBg ; sup fBg), with
�
x (1� x)�1

�
g (x) weakly increasing in x. Then the class of

KR-monotone rules is minimal complete if f(�) is strictly concave or if�
x (1� x)�1

�
g (x) is strictly increasing.

The corollary shows that all KR-monotone rules are admissible when the welfare

function has su¢ ciently weak curvature. However, we can show that some

KR-monotone rules are inadmissible when f(�) has su¢ ciently strong curvature. Again

let f(�) be strictly increasing and di¤erentiable, with g(�) denoting the derivative

function. Let the space B contain only two values, one lower than � and the other
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higher; thus, B = f�L; �Hg, where �L < � < �H . For a speci�ed k with 0 � k � N and

a speci�ed pair (v; w) with 0 � v � w � 1, de�ne the treatment rule

zvw (n) = v for n � k;

zvw (n) = w for n > k:(2.11)

A special case is the KR-monotone rule z01.

Proposition 2.4 compares rule z01 with a non-extreme fractional rule zvw; that is, one

with 0 < v � w < 1. We �nd that rule z01 strictly dominates zvw if the derivative

function g (�) decreases su¢ ciently slowly and vice versa if g (�) decreases su¢ ciently

rapidly.

Proposition 2.4. Let f(�) be strictly increasing and di¤erentiable. Fix k. Let

dL �
P

n>k p(n; �L) and dH �
P

n>k p(n; �H). Let 0 < v � w < 1. Rule z01 strictly

dominates zvw if

g (�) =g (�L) > [dL= (1� dL)] � [(1� w) =v] ;(2.12)

g (�) =g (�H) < [dH= (1� dH)] � [(1� w) =v] :(2.13)

Rule zvw strictly dominates z01 if

g [(1� v)�+ v�L] =g [(1� w)�+ w�L] < [dL= (1� dL)] � [(1� w) =v] ;(2.14)

g [(1� v)�+ v�H ] =g [(1� w)�+ w�H ] > [dH= (1� dH)] � [(1� w) =v] :(2.15)
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Proof. By (2.2), the expected welfare of rules z01 and zvw in the two feasible states

of nature are as follows:

W (z01; �L) = (1� dL) f (�) + dLf (�L) ;(2.16)

W (z01; �H) = (1� dH) f (�) + dHf (�H) ;(2.17)

W (zvw; �L) = (1� dL) f ((1� v)�+ v�L) + dLf ((1� w)�+ w�L) ;(2.18)

W (zvw; �H) = (1� dH) f ((1� v)�+ v�H) + dHf ((1� w)�+ w�H) :(2.19)

Rule z01 strictly dominates zvw if W (z01; �L) > W (zvw; �L) and

W (z01; �H) > W (zvw; �H). Rule zvw strictly dominates if these inequalities are reversed.

Ceteris paribus, the direction of the inequalities depends on the curvature of f(�). By

assumption, f(�) is concave and strictly increasing. Hence, its derivative g(�) is weakly

decreasing and everywhere positive. Use the mean-value theorem to rewrite (2.18) and

(2.19) as

W (zvw; �L) = (1� dL) f (�) + dLf (�L)

+ (1� dL) (�L � �) g [(1� vL)�+ vL�L] v

+dL (�L � �) g [(1� wL)�+ wL�L] (w � 1) ;(2.20)

W (zvw; �H) = (1� dH) f (�) + dHf (�H)

+ (1� dH) (�H � �) g [(1� vH)�+ vH�H ] v

+dH (�H � �) g [(1� wH)�+ wH�H ] (w � 1) ;(2.21)



www.manaraa.com

79

where vL 2 [0; v]; wL 2 [w; 1]; vH 2 [0; v], and wH 2 [w; 1]. Recall that �L < � < �H .

Comparison of (2.16) and (2.17) with (2.20) and (2.21) shows that rule z01 strictly

dominates zvw if and only if

(2.22) (1� dL) g [(1� vL)�+ vL�L] v + dLg [(1� wL)�+ wL�L] (w � 1) > 0

and

(2.23) (1� dH) g [(1� vH)�+ vH�H ] v + dHg [(1� wH)�+ wH�H ] (w � 1) < 0:

Rule zvw strictly dominates z01 if and only if these inequalities are reversed.

Whether (2.22)-(2.23) hold, or the reverse inequalities, depends on how rapidly the

derivative function g(�) decreases with its argument. Direct analysis of the inequalities is

complicated by the fact that the intermediate values (vL; wL; vH ; wH) used in the

mean-value theorem are themselves determined by g(�). However, the fact that g(�) is a

decreasing function implies that simpler su¢ cient conditions for dominance can be

obtained by letting the intermediate values vary over their feasible ranges. Inequalities

(2.12)-(2.13) are the su¢ cient condition for rule z01 to strictly dominate zvw and

inequalities (2.14)-(2.15) are the su¢ cient condition for zvw to strictly dominate z01. �

2.4. Bayes and Minimax-Regret Rules

To learn more about how the shape of the welfare function a¤ects treatment choice,

we next study the behavior of Bayes rules and the minimax-regret rule. Sections 2.4.1

and 2.4.2 present some analytical �ndings for Bayes rules and the minimax-regret rule,
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respectively. Section 2.5 will report some numerical �ndings for the minimax-regret and

other rules.

2.4.1. Bayesian Planning

A Bayesian planner places a prior subjective probability distribution, say �, on the set

B. Observing the number n of experimental successes in the randomized trial, he forms

a posterior distribution, say �(�jn). Treating � as a random variable with distribution

�(�jn), the planner then solves the problem

(2.24) max
�2[0;1]

Z
f [�+ (� � �) �] d�(�jn) :

Proposition 2.5 shows that, given a regularity condition, the Bayes rule assigns the

entire population to treatment a(� = 0) if the posterior mean of � does not exceed �

and assigns a positive fraction to treatment b(� > 0) otherwise. The proposition also

gives a su¢ cient condition for the Bayes rule to be fractional (0 < � < 1).

Proposition 2.5. Consider problem (2.24). Let �(�jn) be non-degenerate. Let

E�(�jn) [�] denote the posterior mean of �.

a) Let f(�) be strictly concave. Then the Bayes rule is unique, therefore admissible. The

solution is � = 0 if E�(�jn) [�] � �.

b) Let f(�) be continuously di¤erentiable. Let f(�) and �(�jn) be su¢ ciently regular that

@

@�

�Z
f [�+ (� � �) �] d�(�jn)

�
=

Z �
@

@�
f [�+ (� � �) �]

�
d�(�jn)
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in a neighborhood of � = 0. Then all solutions satisfy � > 0 if E�(�jn) [�] > �. All

solutions satisfy � 2 (0; 1) if E�(�jn) [�] > � and
R
f (�) d�(�jn) < f (�).

Proof. (a) Strict concavity of f(�) implies that
R
f [�+ (� � �) �] d�(�jn) is

strictly concave in �. Hence, problem (2.24) has a unique solution. If � = 0, thenR
f [�+ (� � �) �] d�(�jn) = f (�). For each � > 0, f [�+ (� � �) �] is strictly concave

as a function of �. Hence,
R
f [�+ (� � �) �] d�(�jn) < f

�
�+

�
E�(�jn) [�]� �

�
�
�
.

Hence, E�(�jn) [�] � �)
R
f [�+ (� � �) �] d�(�jn) < f (�).

(b) @
@�
f [�+ (� � �) �]

���
�=0

= (� � �) � @
@x
f (x)

��
x=�
. Hence,

@
@�

�R
f [�+ (� � �) �] d�(�jn)

	���
�=0

=
�
E�(�jn) [�]� �

�
� @
@x
f (x)

��
x=�
. By assumption,

E�(�jn) [�] > � and @
@x
f (x)

��
x=�

> 0. Hence,
R
f [�+ (� � �) �] d�(�jn) strictly

increases with � in a neighborhood of � = 0, implying that solutions to (2.24) are

positive. If
R
f (�) d�(�jn) < f (�), then � = 1 does not solve (2.24). Hence, solutions

are fractional. �

Observe that the concavity and di¤erentiability restrictions placed on f(�) are used

in di¤erent parts of the proposition. The proof of part (a) only uses the assumption that

f(�) is strictly concave. The proof of part (b) only uses the assumption that f(�) is

continuously di¤erentiable and the stated regularity condition.

2.4.2. Minimax-Regret Planning

The minimax-regret criterion for treatment choice uses no prior information beyond the

planner�s knowledge that � lies in the set B. Let Z denote the space of all functions

that map [0; :::; N ]! [0; 1]. For each � 2 B, max[f(�); f(�)] is the maximum welfare

achievable given knowledge of �, W (z; �) is the expected welfare achieved by rule z(�),
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and the di¤erence between these quantities is regret R(z; �):

R (z; �) � max [f (�) ; f (�)]�W (z; �)

=

NX
n=0

p (n; �) � fmax [f (�) ; f (�)]� f [�+ (� � �) � z (n)]g :(2.25)

A minimax-regret rule zmmr solves the problem

(2.26) inf
z2Z

sup
�2B

R (z; �) :

(Another criterion that uses no information beyond knowledge of B is the maximin

rule. We do not consider it because it is ultra-conservative, entirely ignoring the sample

data. If B contains any value smaller than �, the maximin rule assigns the entire

population to the status quo, whatever the sample size may be.)

Stoye (2007b) has shown that when f(�) is linear and B = [0; 1], there exists an

easily computable KR-monotone minimax-regret rule that satis�es the condition

max
�<�

"
(�� �)

NX
n=0

p (n; �) zmmr (n)

#
= max

�>�

"
(� � �)

NX
n=0

p (n; �) (1� zmmr (n))
#
:

We show here that minimax-regret rules have a similar characterization for nonlinear

f(�) if the class of KR-monotone rules is essentially complete. To simplify exposition, let

f(�) be strictly increasing and continuous on (0; 1). Let B be a closed subset of (0; 1).

Each KR-monotone rule is de�ned by two numbers: the integer k specifying the

location of the step and the fraction � specifying the fraction of the population assigned

to treatment b when there are k experimental successes. The sum

k + (1� �) =
P

n=0:::N [1� z (n)] uniquely indexes each KR-monotone rule. That is,
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there is a one-to-one correspondence between the set of all KR-monotone rules and the

interval [0; N ] through this index.

For each sample outcome, the proportion of population assigned to treatment b and

the regret in each state of nature change monotonically with the value of the index. If z0

and z are KR-monotone treatment rules and
P

n=0:::N [1� z0 (n)] <
P

n=0:::N [1� z (n)],

then z0(n) � z(n) for all n, with strict inequality for one value of n. Moreover,

� < �) R (z0; �) > R (z; �) and � > �) R (z0; �) < R (z; �).

The quantity max�2B\(0;�]R (�; �) is a strictly decreasing and continuous function of

the index
P

n=0:::N [1� z (n)], while max�2B\[�;1)R (�; �) is strictly increasing and

continuous. Hence, there is a unique rule that minimizes maximum regret among

KR-monotone rules. It satis�es the condition

max
�2B\(0;�]

R (zmmr; �) = max
�2B\[�;1)

R (zmmr; �) :

If the class of KR-monotone rules is essentially complete, this treatment rule solves

problem (2.26). The same results hold for KR-monotone rules if B = (0; 1) and f(�)

satis�es the conditions of Proposition 4.2 for M = 1.

The situation is di¤erent if f(�) has strong curvature and B contains positive values

arbitrarily close to zero. Then a minimax-regret rule never assigns the entire population

to treatment b. Proposition 2.6 gives the result.

Proposition 2.6. Let � > 0. Let B contain a sequence of positive values that

converges to zero. If

(2.27) lim
�!0+

�Mf (�) = �1
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for some M � 0, then zmmr(n) < 1 for all n �M regardless of sample size N .

Proof. Let z0 denote the treatment rule that always assigns everyone to treatment

a; thus, z0(n) = 0 for all values of n. This rule has �nite maximum regret

sup�>� f (�)� f (�) � f (1)� f (�). Hence, any treatment rule with in�nite maximum

regret cannot be minimax regret. Suppose z(n) = 1, then

sup
�2B

R (z; �) � lim
�!0+

R (z; �) � lim
�!0+

(p (n; �) � ff (�)� f [�+ (� � �) z (n)]g)

= C (N; n) � lim
�!0+

�
�n (1� �)N�n � [f (�)� f (�)]

�
:

This quantity is in�nite because lim�!0

h
�n (1� �)N�n

i
� f (�) is �nite,

lim�!0 (1� �)N�n = 1 and lim�!0 [�
n � f (�)] = �1 follows from (2.27). Hence, the

minimax-regret rule must have zmmr(n) < 1. �

To illustrate, consider the welfare function f (x) = �x�K , where K > 1. Then (2.27)

holds for M < K and zmmr(n) < 1 for n < K. Consider the function f(x) = � exp (x�1).

Then (2.27) holds for all values of M and zmmr(n) < 1 for any n.

2.5. Implications for Treatment Choice in Practice

This concluding section explores some implications of our analysis for the practice of

treatment choice. In the course of doing so, we present numerical �ndings that add

texture to the analysis.
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2.5.1. Test-Based Rules in Medicine

Although problems of choice between a status quo treatment and an innovation occur

often in practice, explicit use of statistical decision theory to make such choices is rare.

In the medical arena, the branch of statistics that has strongly in�uenced practice has

been hypothesis testing rather than decision theory. Indeed, testing the hypothesis of

zero average treatment e¤ect is institutionalized in the U.S. food and drug

administration (FDA) drug approval process, which calls for comparison of a new

treatment under study (t = b) with a placebo or an approved treatment (t = a). FDA

approval of the new treatment normally requires one-sided rejection of the null

hypothesis of zero average treatment e¤ect fH0: E[y(b)] = E[y(a)]g in two independent

clinical trials (Fisher and Moyé, 1999). In the context of treatments with binary

outcomes, this means performance of a test with null hypothesis fH0 : � = �g and

alternative fH1 : � > �g.

The use of an hypothesis test to choose between the status quo treatment and an

innovation gives the status quo a privileged position and, thus, might be loosely

construed as an expression of risk aversion. However, the classical practice of handling

the null and alternative hypotheses asymmetrically, �xing the probability of a type I

error and seeking to minimize the probability of a type II error, is di¢ cult to motivate

from the perspective of treatment choice. Moreover, error probabilities at most measure

the chance of choosing a sub-optimal rule. They do not measure the loss in welfare

resulting from a sub-optimal choice.

Even if statistical decision theory does not motivate treatment rules based on

hypothesis tests, we can productively use decision theory to evaluate such rules. In the
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setting of this chapter, a conventional test-based rule assigns treatment b to the entire

population if the number of experimental successes is large enough to reject H0 and

assigns treatment a otherwise. Thus, a test-based rule has the form

(2.28)
z (n) = 0 for n � d (s; �) ;

z (n) = 1 for n > d (s; �) ;

where s is the speci�ed size of the test and d(s; �) is the associated critical value. Given

that n is binomial, d(s; �) = min i : p (n > i;�) � s.

Test-based rules are KR-monotone. Hence, by the Corollary to Proposition 2.3, these

rules are admissible if the welfare function has su¢ ciently weak curvature. This fact

gives some grounding for the application of test-based rules, but admissibility is only a

necessary condition for a treatment rule to be attractive. To obtain further

understanding, we next compare the maximum regret of test-based rules with that of

other treatment rules.

2.5.2. Comparing a Test-Based Rule with the Minimax-Regret Rule and the

Plug-in Rule

Figure 2.1 shows the maximum regret of the treatment rule based on the exact binomial

test with conventional size s = 0:05. The four panels of the �gure consider two welfare

functions (linear and log) and two values of � (0.25 and 0.75). In each panel, the x-axis

gives the sample size N , ranging from 1 to 100. The y-axis gives maximum regret

multiplied by N1=2. For comparison, Figure 2.1 also shows the maximum regret of the

minimax-regret rule and of the empirical plug-in rule. The latter rule assigns the entire
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Figure 2.1: Maximum regret, N = 1:::100. (a) � = 0:25; f(x) = x; (b) � = 0:75; f(x) = x;
(c) � = 0:25; f(x) = log x; (d) � = 0:75; f(x) = log x.

population to treatment b if the empirical rate of treatment success exceeds �, and

assigns everyone to treatment a otherwise.

Consider �rst the behavior of maximum regret as a function of sample size. In every

case, the primary large-scale feature of the plot is its invariance with N . This shows

that maximum regret converges to zero at rate N1=2 as sample size increases. A curious

small-scale feature of the plots for the test-based and plug-in rules is jaggedness as the
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sample size varies across adjacent values of N . This occurs because these rules are step

functions that remain constant over multiple values of N ; for example, the plug-in rule

is z(n) = 1 jn > �N j. The plots for the minimax-regret rule show no such jaggedness

because the minimax-regret rule is fractional at the threshold and changes more

smoothly with N .

Now compare the maximum regret of the three treatment rules. In every case, the

maximum regret of the test-based rule is much larger than that of the minimax-regret

rule. When the sample size is larger than ten, the ratio of the former maximum regret to

the latter is typically about 5 to 1. These ratios quantify the inferiority of the test-based

rule when viewed from the vantage of maximum regret.

One should not conclude that the test-based rule is inferior in all states of nature.

Being admissible, this rule must yield smaller regret in some states of nature. The

test-based rule, which "stacks the deck" in favor of the status quo treatment, delivers

smaller regret than the minimax-regret rule in states of nature with � < � and larger

regret in states with � > �. The clear inferiority of the rule in terms of maximum regret

arises because, under both the linear and log welfare functions, the latter losses are

much larger than the former gains.

Observe that the maximum regret of the plug-in rule is close to that of the

minimax-regret rule. Indeed, the two are nearly the same at the bottom of each jag of

the plug-in rule. Although the minimax-regret rule is relatively easy to compute, the

plug-in rule is simpler yet. Hence, the plots indicate that a practitioner who is not

equipped to compute the minimax-regret rule would su¤er little by using the plug-in

rule as an approximation.
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Figure 2.2: Threshold sample size, N = 1:::20: (a) � = 0:25; (b) � = 0:75.

2.5.3. Variation of the Minimax-Regret Rule with the Welfare Function

Finally, we return to the question that most motivates this chapter, namely how the

welfare function a¤ects treatment choice. The analysis of Sections 2.3 and 2.4 has made

clear that moving from a linear welfare function to one that is strongly curved can have

important consequences. If f(�) has strong curvature, KR-monotone rules may not be

admissible (Proposition 2.4) and the minimax-regret rule never assigns the entire

population to treatment b (Proposition 2.6). However, our analysis has not explored the

consequences of moving from a linear welfare function to one with su¢ ciently weak

curvature that the KR-monotone rules continue to form the minimal complete class

(Corollary to Proposition 2.3).

To shed some light on this, we compare the minimax-regret rule for the linear and

log welfare functions. Figure 2.2 presents this comparison for the same values of � as in

Figure 2.1. In each panel, the x-axis gives the sample size N , ranging from 1 to 20. The

�ndings to be discussed here are similar for the larger sample sizes shown in Figure
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2.1.We do not present larger sample sizes in Figure 2.1 because making the x-axis run

from 1 to 100 seriously diminishes one�s ability to see important features of the plots.

The y-axis of each panel gives a one-dimensional representation of the

minimax-regret rule. Having the KR-monotone form, this rule is de�ned by two

numbers: the integer k specifying the location of the step and the fraction � specifying

the fraction of the population assigned to treatment b when there are k experimental

successes. A one-dimensional representation of the rule is achieved by computing

k + (1� �). For example, the value 2.7 on the y-axis of Figure 2.2 means that k = 2 and

� = 0:3.

Figure 2.2 shows that moving from the linear to log welfare function has very little

e¤ect on the minimax-regret rule. The KR-threshold k + (1� �) is nearly the same

under both welfare functions. When � = 0:75, the quantitative change in k + (1� �) is

so small as barely to be visible. When � = 0:25, the change is more noticeable but its

magnitude is still small. In both cases, the plots with respect to sample size are close to

parallel to one another. We have computed analogs to Figure 2.2 for � as small as 0.01,

and found that the variation in the rule across welfare functions is still small and that

the plots remain close to parallel.

Figure 2.2 also shows the empirical plug-in rule. It is very similar to the two

minimax-regret rules, the primary di¤erence being that it is a step function rather than

one that varies smoothly with N . This similarity explains why, in Figure 2.1, we found

that the maximum regret of the plug-in rule is close to that of the minimax-regret rule.

Taken in combination, our analytical �ndings and the numerical �ndings in Figure

2.2 indicate that concavity of the welfare function does not per se have important
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consequences for treatment choice. What matters is the degree of curvature of the

welfare function. We cannot say how curved a welfare function should be in practice.

The answer to this question is necessarily context speci�c.
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CHAPTER 3

Measuring Precision of Statistical Inference on Partially

Identi�ed Parameters

3.1. Introduction

It has become widely recognized that many types of statistical data only partially

identify the parameters of interest as simple as population means, meaning that the

parameters cannot be estimated with arbitrary precision simply by increasing the sample

size. Statisticians designing surveys and experiments which generate such data could use

limited resources either to reduce the extent of partial identi�cation or to reduce

sampling error. The former can be accomplished, for example, by putting more e¤ort

into pursuing sampled population members who did not respond to a survey. The latter

by increasing sample size or improving measurement precision. To inform these choices,

it is useful to analytically derive the relative e¤ects of both margins of planning on the

precision of inference, which the planner could then compare to their relative costs.

The problem was �rst considered in the Cochran-Mosteller-Tukey report on the

Kinsey study published in 1954. Concerned with nonrandom nonresponse to the study�s

questions, CMT advocated a conservative approach to inference that sets limits on

population parameters by allowing for any values of the variable in the part of the

population that was not sampled or refused to respond. A variety of applications of the

same approach, now known as partial identi�cation, has been developed by Manski
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(1995, 2007a) and other researchers. CMT calculated for di¤erent sample sizes and

refusal rates the relative e¤ects of reducing nonresponse or increasing the sample size on

the precision of inference about the population means. They judged the precision of

inference by the length of a 95% con�dence interval around the estimated identi�cation

region. The same measure of precision has been used to illustrate the e¤ects of missing

data on the precision of inference by Horowitz and Manski (1998) and McFadden (2006).

Length of a con�dence interval for the identi�cation region is not the only reasonable

way to measure the precision of inference on the parameter of interest. In this chapter I

consider two other measures of precision and show that they yield qualitatively di¤erent

conclusions about the relative merits of reducing sampling error and reducing the extent

of partial identi�cation. First, I consider the maximum mean squared error (MSE) of

the point estimate around the true value of the parameter, which has often been used by

statisticians to measure the precision of estimators of point identi�ed parameters.

The second measure considered in this chapter is the maximum regret of a statistical

treatment rule. It is applicable when the parameter of interest is the di¤erence in

average returns of two mutually exclusive policies or treatments for a population of

interest and the goal of inference is to decide which one should be used. Regret, then, is

the average welfare loss incurred from choosing an inferior treatment for the population

based on the observed statistical data. In recent years, econometricians started studying

statistical treatment rules that minimize maximum regret both when the average

treatment e¤ect of interest is point identi�ed (Manski 2004, 2005; Hirano and Porter

2006; Stoye 2007b; Schlag 2007; Manski and Tetenov 2007) and when it is partially

identi�ed (Manski 2007a, 2007b, 2008a, 2008b; Stoye 2007a, 2007c).
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I apply these measures of precision to the following partial identi�cation problem.

Let the real-valued parameter of interest � = �O + �U be the sum of a point identi�ed

component �O and a partially identi�ed component �U . For the point identi�ed

component �O, the statistician observes an unbiased normally distributed estimate with

known standard error �. The partially identi�ed component �U is only known to lie in a

given bounded interval of length 2P . The problem is deliberately simpli�ed to

demostrate in an analytically tractable setting the qualitative di¤erences between the

conclusions about the relative bene�ts of reducing sampling error vs. narrowing the

identi�cation region drawn based on alternative measures of precision. I derive the

minimax estimator of � under the maximum MSE criterion and a minimax regret

statistical treatment rule under the maximum regret criterion. I show that as � ! 0,

both of these measures of precision imply greater relative importance of addressing the

partial identi�caton problem than measuring the length of con�dence intervals suggests.

For maximum regret, the result is particularly strong. If the standard error � falls below

a certain proportion of the width of the identi�cation region 2P , then reducing it even

further does not reduce maximum regret. Thus, more precise inference for treatment

choice could be made only by reducing the width of the identi�cation region. The same

e¤ect has been shown by Stoye (2007c) in a problem of treatment choice based on

random samples of binary treatment outcomes with missing data.

The chapter proceeds as follows. Section 3.2 describes the statistical problem and

reviews the results of measuring precision of inference by the length of con�dence

intervals. In section 3.3, I derive the estimator of � that minimizes maximum MSE and

evaluate the e¤ect of changing the parameters of the problem on its minimax MSE. In
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section 3.4, I consider the problem from a statistical treatment choice perspective, derive

a minimax regret statistical treatment rule and evaluate the e¤ects of changing the

parameters of the problem (� and P ) on its minimax regret. Section 3.5 concludes and

section 3.6 collects all proofs.

3.2. Statistical Setting and the Con�dence Interval Approach

I will consider the following partial identi�cation problem. The parameter of interest

to the statistician is

� = �O + �U :

�O 2 R is a point identi�ed (observable) component, for which the statistician could

obtain an unbiased normally distributed estimate X with standard error �:

X � N
�
�O; �

2
�
.

�U is a partially identi�ed (unobservable) component, which is only known to lie in a

bounded interval of length 2P :

�U 2 [�P; P ] .

The restriction that �U lies in a symmetric interval around zero is without loss of

generality.

For example, � could be the di¤erence between average potential outcomes of two

alternative treatments on a population of interest. Suppose that �O is the average

outcome of one treatment, which is point identi�ed by experimental data generated by

assigning that treatment to a random sample of population members, while ��U is the



www.manaraa.com

96

average outcome of the second treatment, which is partially identi�ed based on

observational data.1

Alternatively, �O could be the average di¤erence in potential outcomes of the two

treatments point identi�ed by an experiment that randomly assigned one of two

treatments to members of the population of interest, while ��U is the di¤erence between

future costs of the two treatments that the randomized experiment did not seek to

measure.

In this setting, the pair (�; P ) describes the parameters of the experiment. The main

question of this chapter is how do these parameters of the experiment a¤ect the

precision of inference on � that the statistician could carry out based on its results

(observation of X). Formally, let the function

M (�; P ) � 0

be a particular measure of maximum precision with which the statistician can carry out

inference on � based on the data from an experiment with parameters (�; P ). Lower

values of M (�; P ) correspond to more precise inference and M (�; P ) = 0 corresponds to

perfect precision (so, for example, M (0; 0) = 0). I will evaluate three such functions and

the relative marginal e¤ects of changes in � and P on the precision they imply:

(3.1)
@M (�; P ) =@�

@M (�; P ) =@P
.

1I am grateful to Chuck Manski for this example.
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When evaluating a proposed experiment, the planner could compare (3.1) to the ratio of

marginal costs of decreasing � and P and see whether the proposed allocation of

resources maximizes the precison of inference (minimizes M (�; P )).

First, let�s consider using the length of a 100 (1� �)% con�dence interval for the

identi�cation interval as the measure of precision. In this model, the identi�cation set

for the parameter of interest � is

(3.2) � 2 [�O � P; �O + P ] .

Given that the random experimental outcome X is normally distributed with mean �O

and standard error �, the con�dence interval

(3.3)
�
X � P � ��1 (1� �=2)�;X + P + ��1 (1� �=2)�

�
contains the identi�cation set (3.2) exactly with probability 1� �. � denotes the

standard normal c.d.f., so for the conventional 95% con�dence intervals, for example,

��1 (1� �=2) � 1:96. The precision of inference from an experiment with parameters

(�; P ), as measured by the length of a 100 (1� �)% con�dence interval then equals

MCI(�) (�; P ) � 2��1 (1� �=2)� + 2P .

The marginal e¤ects of changes in � and P equal

@MCI(�) (�; P )

@�
= 2��1 (1� �=2) ;

and
@MCI(�) (�; P )

@P
= 2.
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The ratio of these marginal e¤ects equals

(3.4)
@MCI(�) (�; P ) =@�

@MCI(�) (�; P ) =@P
= ��1 (1� �=2) .

Thus, if the length of conventional 95% con�dence intervals is used as a measure of

precision, then a reduction of the standard error � by " always brings the same

improvement as a reduction of the half-length P of the identi�cation interval by 1:96".

Note that the evaluation of the relative e¤ects of reducing the sampling error and the

extent of partial identi�cation depends on the chosen con�dence level 100 (1� �)%.

Thus, using a 99% con�dence level instead of 95% would imply a relatively higher value

of reducing the standard error instead of reducing the extent of partial identi�cation.

3.3. Minimax Mean Squared Error Approach

Suppose, now, that instead of an interval the statistician is asked to provide a single

point estimate of �. Let the estimator �̂ (X) be a function mapping the observed

experimental outcome X into the estimate that the statistician provides upon observing

X. There is a long tradition in statistics of measuring the precision of point estimators

by their mean squared error

E(�O;�U )

�
�̂ (X)� �

�2
= E(�O;�U )

�
�̂ (X)� �O � �U

�2
.

The expectation here is taken with respect to the probability distribution of X for a

given value of �O. �U does not a¤ect the probability distribution of the experimental

outcome X, but a¤ects the magnitude of error.
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Proposition 3.1 shows that the estimator �̂ (X) = X minimizes the maximum MSE

(3.5) max
�O2R;

�U2[�P;P ]

E(�O;�U )

�
�̂ (X)� �O � �U

�2
.

If we assumed that �U lies in an interval �U 2 [L;U ], then the corresponding minimax

estimator would be �̂ (X) = X + L+U
2
.

Proposition 3.1. If �O 2 R, �U 2 [�P; P ], and X � N (�O; �
2), then the estimator

�̂ (X) � X

minimizes maximum MSE (3.5), which equals

MMSE (�; P ) � �2 + P 2.

The marginal e¤ects of changes in � and P on the maximum mean squared error

equal

@MMSE (�; P )

@�
= 2�;

and
@MMSE (�; P )

@P
= 2P .

And the ratio of these marginal e¤ects equals

(3.6)
@MMSE (�; P ) =@�

@MMSE (�; P ) =@P
=
�

P
.

This ratio yields qualitatively di¤erent conclusions than the ratio derived for con�dence

intervals about the relative bene�ts of reducing � vs. reducing P when planning surveys
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or experiments. When �
P
< ��1 (1� �=2),

@MMSE (�; P ) =@�

@MMSE (�; P ) =@P
<
@MCI(�) (�; P ) =@�

@MCI(�) (�; P ) =@P
.

Thus, the maximum MSE measure of precision implies lower importance of further

reducing standard errors than does the length of con�dence interval measure. For the

conventional 95% con�dence intervals ��1 (1� �=2) � 1:96. Thus, in evaluating any

proposed experiment or survey in which the standard error is going to be smaller than

the length of the identi�cation interval (� < 1:96P ) a planner using the maximum MSE

measure of precision would allocate more resources to reducing the extent of partial

identi�cation than a planner measuring precision by the length of the con�dence

interval. The di¤erence between the "marginal rates of substitution" produced by the

two methods could be particularly large when considering large sample surveys and

experiments in which the extent of partial identi�cation could greatly exceed sampling

error.

3.4. Minimax Regret Approach

The third measure of precision - minimax regret - is motivated by directly

considering the economic loss resulting from incorrect inference about � when � is the

di¤erence in average returns of two alternative policy decisions and the ultimate aim of

inference about � is to choose which policy to implement. For example, the policies may

be two proposed cancer therapies, with � measuring the average di¤erence in the welfare

of cancer patients from a target population net of the average di¤erence between the

costs of these two therapies.
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Let � = r2 � r1, where r1 is the average return from implementing the �rst policy

and r2 the average return from implementing the second policy. Then the economic loss

from choosing the second policy when, in fact, r1 > r2 (� < 0) equals r1 � r2 = ��. The

economic loss from choosing to implement the �rst policy when, in fact, r1 < r2 (� > 0)

equals r2 � r1 = �. The method by which the decision maker chooses which policy to

implement based on experimental data X could be summarized by a statistical treatment

rule � (X), which is a function mapping feasible realizations of X 2 R into the [0; 1]

interval. �
�
�X
�
= 0 if the decision maker implements the �rst policy when outcome �X is

observed, �
�
�X
�
= 1 if she implements the second policy. �

�
�X
�
could takes values

between 0 and 1 if the decision maker could implement either policy with some

probability upon observing outcome �X.

The regret of statistical treatment rule � is the average (over the probability

distribution of outcome X) economic loss incurred by the decision maker using �. It is a

function of �O and �U , and in this problem equals

(3.7) R (�; (�O; �U)) �

8><>: � � [1� E�O� (X)] if � > 0,

�� � E�O� (X) if � � 0,

where E�O� (X) denotes the average value of � (X) given that X � N (�O; �
2). When

� > 0, the �rst policy is inferior and [1� E�O� (X)] is the probability with which the

decision maker would mistakenly choose it based on observation of the random

experimental outcome X. When � < 0, the second policy is inferior and E�O� (X) is the

probability of choosing it.
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Minimizing maximum regret was a criterion suggested by Savage (1951) as a

clari�cation of Wald�s minimax principle (1950). For a more detailed discussion on

applying minimax regret criterion to statistical treatment choice problems see Manski

(2004 or 2007a, Chapter 11).

Of course, if we will measure the precision of inference by the maximum regret of a

statistical treatment rule, then we �rst ought to �nd statistical treatment rules that

minimize maximum regret for given experimental parameters (�; P ). Proposition 3.2

derives such rules and their maximum regret.

Proposition 3.2. a) For � > 2P � � (0), the unique minimax regret statistical

treatment rule is

(3.8) �M(�;P )(X) � 1 jX > 0j .

Its maximum regret equals

max
�O2R;

�U2[�P;P ]

R
�
�M(�;P ); (�O; �U)

�
= max

h>0

�
h�

�
P � h
�

��
>
P

2
,

which is a strictly increasing function of � for any given P .

b) For � � 2P � � (0), statistical treatment rules

(3.9) �M(�;P ) (X) �

8><>: 1 jX > 0j if � = 2P � � (0) ,

�
��
(2P � � (0))2 � �2

��1=2
X
�
if � < 2P � � (0) ,

minimize maximum regret, which equals P
2
.
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Two features of Proposition 3.2 are qualitatively similar to results obtained by Stoye

(2007c), who studied minimax regret statistical treatment rules based on binary

outcome data from an experiment with randomized treatment assignment in which the

outcomes are missing with some probability.

First, when the extent of partial identi�cation (in Stoye�s problem, the maximum

feasible proportion of missing outcomes) is below some threshold relative to the

sampling error, the minimax regret statistical treatment rule is the same as it would be

with point identi�cation. In Proposition 3.2 (part a) the same result holds, the minimax

regret statistical treatment rule (3.8) is identical for all values of P � �
2�(0)

, including the

point identi�ed case P = 0.

The second qualitative similarity is that maximum regret of the minimax regret

statistical treatment rule becomes constant with respect to the sampling error once the

sampling error falls below some threshold relative to the extent of partial identi�cation.

Thus, reducing the sampling error below that threshold (reducing � in this chapter,

increasing sample size in Stoye�s) could not further reduce minimax regret.

Since this second result could appear counterintuitive, it deserves further

explanation. Let

q (�; �O) � E�O� (X)

denote the average probability (with respect to the distribution of X) with which the

decision maker using statistical treatment � will choose the second policy. Then for a

given value of P , P
2
is the lower bound on maximum regret attainable by any statistical

treatment rule for any value of �. This could be seen by considering maximum regret
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over the subset f�O = 0; �U 2 [�P; P ]g

max
�O2R;

�U2[�P;P ]

R (�; (�O; �U)) � max
�U2[�P;P ]

R (�; (0; �U)) = max (P � q (�; 0) ; P � (1� q (�; 0))) �
P

2
.

In order to attain this lower bound, the statistical treatment rule � must satisfy

q (�; 0) = 1
2
. For values ��O 6= 0, however, there is a range of values of q

�
�; ��O

�
for which

max
�U2[�P;P ]

R
�
�;
�
��O; �U

��
� P

2
.

This range is given by the inequalities

(3.10)
q (�; �O) � 1� P

2(P+�O)
for �O � �P

2
,

q (�; �O) � P
2(P��O) for �O � P

2
.

As shown in Proposition 3.2, for � � 2P � � (0), it is possible to construct statistical

treatment rules that satisfy these inequalities for all �O 2 R. Figure 3.1 displays in bold

lines the bounds (3.10) and shows that the function q
�
�M(�;P ); �O

�
= �

�
�O

2P ��(0)

�
, which

is identical for all minimax regret rules de�ned by (3.9), �ts within these bounds.

Statistical treatment rules derived in part b of Proposition 3.2 may not be the only

ones that minimize maximum regret, but deriving one class of minimax regret rules is

su¢ cient to make conclusions about the minimum value of maximum regret, and thus

about the precision of inference from the data for treatment choice.
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Figure 3.1: Bounds on q (�; �O) that guarantee attaining the lower bound on maximum
regret (P=2).

Suppose that the planner chooses minimax regret to measure inferential precision of

the data generated by an experiment with parameters (�; P )

MMMR (�; P ) �

8><>:
max
h>0

�
h�
�
P�h
�

�	
if � > 2P � � (0) ,

P
2

if � � 2P � � (0) .

Doing so could yield even more drastically di¤erent conclusions about the relative

bene�ts of reducing the extent of partial identi�cation and reducing sampling error than

either the con�dence interval length or the maximum MSE approach, since for
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�
P
� 2� (0) � 0:8

@MMMR (�; P )

@�
= 0,

@MMMR (�; P )

@P
=

1

2
,

implying that reducing the extent of partial identi�cation is not only relatively more

important than reducing sampling error, it is the only way to reduce minimax regret and

improve the inferential precision of experimental or survey data for treatment choice.

3.5. Conclusion

In this chapter, I considered two alternative measures of inferential precision for

partially identi�ed parameteres in addition to the length of 95% con�dence interval,

which is the primary measure previously considered by other researchers. All three

measures yield qualitatively di¤erent conclusions about the relative merits of reducing

sampling error and reducing the extent of partial identi�cation in the data. In

particular, both the maximum mean squared error and minimax regret (applicable when

inference is carried out on the average treatment e¤ect with the goal of choosing the

best treatment) emphasize greater value of reducing the extent of partial identi�cation

compared to the con�dence interval measure if the sampling error is relatively small

compared to the width of the identi�cation interval.

The statistical problem with a normal sampling distribution considered in the

chapter is simple in comparison to many practical problems. However, it is su¢ ciently

rich to capture some of the main features of partial identi�cation problems and to

concisely illustrate how choosing di¤erent criteria for measuring the precision of
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inference qualitatively impacts the conclusions about the relative value of reducing the

extent of partial identi�cation and reducing sampling error. The results could serve both

as a rough practical approximation for partial identi�cation problems with similar

structure and as a useful indicator of potential �ndings for future research that considers

more complex practical partial identi�cation problems.

3.6. Proofs

Proposition 3.1

For an estimator �̂ (X), de�ne

b�̂ (�O) � E�̂ (X)� �O,

v�̂ (�O) � E
�
�̂ (X)� E�̂ (X)

�2
,

with expectatations taken over the probability distribution of X � N (�O; �
2). It is well

known (e.g., Berger 1985, p. 350) that �̂
�
(X) = X is a minimax estimator of normal

mean �O under squared error. That means for any other estimator �̂ (X)

max
�O2R

E
�
�̂(X)� �O

�2
� max

�O2R
E
�
�̂
�
(X)� �O

�2
,

max
�O2R

�
v�̂ (�O) + b

2
�̂
(�O)

�
� max

�O2R

�
v�̂� (�O) + b

2
�̂
� (�O)

�
= �2.(3.11)

The maximum MSE of �̂ (X) for estimating � = �O + �U equals

max
�O2R;

�U2[�P;P ]

E
�
�̂(X)� �O � �U

�2
= max

�O2R;
�U2[�P;P ]

�
v�̂ (�O) +

�
E�̂ (X)� �O � �U

�2�
=

= max
�O2R

�
v�̂ (�O) + (jb�̂ (�O)j+ P )

2� .
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Since for �̂
�
(X), b�̂� (�O) = 0 and v�̂� (�O) = �

2, its maximum MSE equals �2 + P 2.

It follows from (3.11), that the maximum MSE of any other estimator �̂ (X)

max
�O2R

�
v�̂ (�O) + (jb�̂ (�O)j+ P )

2� � max
�O2R

�
v�̂ (�O) + b

2
�̂
(�O)

�
+ P 2 � �2 + P 2,

thus �̂
�
(X) = X minimizes the maximum MSE. �

Proposition 3.2(a)

Let (�O; �U) 2 �;� = R� [�P; P ]. The proof of part a relies on a well known result

(e.g., Berger 1985, p. 350) that if �� is a proper prior distribution on �, the decision

rule �� is Bayes with respect to ��, and for all (�O; �U) 2 �

R (��; (�O; �U)) �
Z
R (�; (�O; �U)) @�

� (�O; �U) ,

then the decision rule �� is minimax. This result applies as well when R denotes regret,

then �� is a minimax-regret rule.

Decision rule

��(X) � 1 jX > 0j

is Bayes with respect to any symmetric two-point prior distribution � with

� (��O; �
�
U) = :5 and � (���O;���U) = :5, if ��O > 0 and ��O + ��U > 0.

When � > 0, for a given value of �O, regret

R (��; (�O; �U)) = (�O + �U) � [1� E�O�� (X)] is largest at �U = P , since the �rst term is

increasing in �U and the second term is positive and doesn�t depend on �U . Since

E�O�
� (X) = 1� �

�
� �O

�

�
, maximum regret of �� over � > 0 then equals (with the



www.manaraa.com

109

substitution h = �O + P )

max
�O;�U2�;
�O+�U>0

R (��; (�O; �U)) = max
�O>�P

�
(�O + P ) � �

�
��O
�

��
= max

h>0

�
h�

�
P � h
�

��
.

The maximum is attained at

��O = argmax
h>0

�
h�

�
P � h
�

��
� P .

When � < 0, regret R (��; (�O; �U)) = � (�O + �U) � E�O�� (X) is maximized at

�U = �P for a given �O, and equals (with the substitution h = � (�O � P ))

max
�O;�U2�;
�O+�U<0

R (��; (�O; �U)) = max
�O<P

�
� (�O � P ) � �

�
�O
�

��
= max

h>0

�
h�

�
P � h
�

��
.

Let�s di¤erentiate h�
�
P�h
�

�
with respect to h

@

@h

�
h�

�
P � h
�

��
= �

�
P � h
�

�
� h
�
�

�
P � h
�

�
= �

�
P � h
�

�"
1� h

�

�
�
P�h
�

�
�
�
P�h
�

�# .
At h = 0, @

@h

�
h�
�
P�h
�

��
= �

�
P
�

�
> 0. The function �(y)

�(y)
> 0 is strictly decreasing with

lim
y!�1

�(y)
�(y)

= +1, thus h
�

�(P�h� )
�(P�h� )

is strictly increasing in h over h > 0 and

lim
h!1

�
1� h

�

�(P�h� )
�(P�h� )

�
= �1. It follows that @

@h

�
h�
�
P�h
�

��
changes sign once over h > 0

from positive to negative at h� given by h�

�

�
�
P�h�
�

�
�(P�h

�
� )

= 1, thus h�
�
P�h
�

�
attains its

maximum over h > 0 at h�.

When � > 2P � � (0), h� > P . To see this, evaluate @
@h

�
h�
�
P�h
�

��
at h = P :

@

@h

�
h�

�
P � h
�

������
h=P

= �(0)� P
�
� (0) =

1

2
� P � � (0)

�
> 0.
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Thus @
@h

�
h�
�
P�h
�

��
changes sign at h� > P . Since h� > P , maximum regret is attained

at (��O; P ) and (���O;�P ), where ��O = h� � P > 0.

Maximum regret of �� exceeds P
2
because @

@h

�
h�
�
P�h
�

��
> 0 for P � h < h�,

therefore

max
h>0

�
h�

�
P � h
�

��
= h��

�
P � h�
�

�
> P�

�
P � P
�

�
=
P

2
.

Since �� is a Bayes rule with respect to prior �� with �� (��O; P ) = :5 and

�� (���O;�P ) = :5 andZ
R (��; (�O; �U)) @�

� (�O; �U) = R (�
�; (��O; P )) = max

�O2R;
�U2[�P;P ]

R (��; (�O; �U)) ,

�� minimizes maximum regret. Furthermore, since �� is a unique Bayes rule up to

randomization at X = 0, which does not a¤ect R (�; (�O; �U)) for any values of (�O; �U),

it is admissible.

To verify that minimax regret max
h>0

�
h�
�
P�h
�

��
is a decreasing function of � for a

given P and � > 2P � � (0), observe that since h� > P ,

max
h>0

�
h�

�
P � h
�

��
= max

h>P

�
h�

�
P � h
�

��
.

For any h > P , h�
�
P�h
�

�
is strictly decreasing in � and has a unique maximum over

h > P for a given �, thus max
h>P

�
h�
�
P�h
�

��
is strictly decreasing in �. �

Proposition 3.2(b)
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First, I will show that any rule � for which q (�; �O) = E�O� (X) lies within the

bounds (3.10) has maximum regret of P
2
. The lower bound

q (�; �O) � 1� P
2(P+�O)

for �O � �P
2
,

guarantees that R (�; (�O; �U)) � P
2
over � > 0. Since R (�; (�O; �U)) is increasing in �U

when � > 0,

max
�O;�U2�;
�O+�U>0

R (�; (�O; �U)) = max
�O>�P

R (�; (�O; P )) = max
�O>�P

[(�O + P ) � [1� q (�; �O)]] .

For �O � �P
2
, if q (�; �O) � 1� P

2(P+�O)
� 0, then

(�O + P ) � [1� q (�; �O)] � (�O + P ) �
P

2 (P + �O)
=
P

2
.

For �O 2
�
�P;�P

2

�
,

(�O + P ) � [1� q (�; �O)] � �O + P �
P

2
.

The proof for the upper bound, which ensures that R (�; (�O; �U)) � P
2
for � < 0, is

analogous. Both the lower and the upper bound are equal to 1
2
at �O = 0, thus

q (�; 0) = 1
2
and

max
�O;�U2�

R (�; (�O; �U)) � max
�U2[�P;P ]

R (�; (0; �U)) =
P

2
.

Thus the maximum regret of � equals P
2
if q (�; �O) satis�es inequalities (3.10).
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Second, I will show that the function

q� (�O) � �
�

�O
2P � � (0)

�

lies within the bounds (3.10). The proof will verify this for �O � 0, it is analogous for

�O < 0.

When �O = 0, q� (0) = � (0) = 1
2
, which coincides with both bounds. q� (�O) satis�es

the upper bound because for �O 2
�
0; P

2

�
�

�
�O

2P � � (0)

�
� 1

2
+

�O
2P � � (0) � � (0) =

P + �O
2P

� P

2 (P � �O)
.

The �rst inequality follows from using � (0) as an upper bound on the derivative of �.

The second one follows from (P + �O) (P � �O) = P 2 � �2O � P 2.

The proof that q� (�O) � 1� P
2(P+�O)

for all �O � 0 is split into two cases, �O 2 [0; P ]

and �O � P .

Case 1. For �O 2 [0; P ], I will prove that q� (�O) increases faster than the lower

bound, which guarantees that q� (�O) � 1� P
2(P+�O)

, since both are equal at �O = 0. It

will be su¢ cient to consider P = 1, to simplify notation, and thus �O 2 [0; 1]. For

P = 1, q� (�O) = �
�

�O
2�(0)

�
, � (y) = 1p

2�
exp

�
�1
2
y2
�
, with 2� (0) =

q
2
�
, thus

@

@�O
q� (�O) =

1

2� (0)
�

�
�O
2� (0)

�
=

r
�

2
� 1p
2�
exp

 
�1
2

�r
�

2
�O

�2!
=
1

2
exp

�
��
4
�2O

�
.
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Since the function e (y) is convex with e (0) = 1 and e (1) < 3, e (y) � 1 + 2y for

y 2 [0; 1], therefore e (y) � 1
1�2y for y 2 [�1; 0]. Since

�
4
< 1 and �2O < 1,

1

2
exp

�
��
4
�2O

�
� 1

2
� 1

1 + �
2
�2O
=

1

2 + ��2O
.

For � 2 [0; 1], ��O < 4, thus ��2O � 4�O and 2 + ��2O � 2 + 4�O + 2�2O = 2 (1 + �O)
2,

therefore 1
2+��2O

� 1
2(1+�O)

2 , and

@

@�O
q� (�O) �

1

2 + ��2O
� 1

2 (1 + �O)
2 =

@

@�O

�
1� 1

2 (1 + �O)

�
.

Case 2. For �O � P , I will also use P = 1 to simpify notation, so the aim is to prove

that q� (�O) = �
�

�O
2�(0)

�
� 1� 1

2(1+�O)
. For y > 0, 1� � (y) < �(y)

y
, which implies

q� (�O) = �

�
�O
2� (0)

�
> 1� 2� (0)

�O
�

�
�O
2� (0)

�
= 1� 1

��O
exp

�
��
4
�2O

�
.

For y � 0, e (y) � 1 + y, thus for y � 0, e (y) � 1
1�y . Using this inequality yields

q� (�O) > 1�
1

��O
� 1

1 + �
4
�2O
= 1� 1

��O +
�2

4
�3O
> 1� 1

2 (1 + �O)

where the last inequality follows from observation that �
2

4
> 2, and for �O � 1, ��O > 2

and �3O � �O.

Since q� (�O) satis�es the inequalities (3.10), any statistical treatment rule with

q (�; �O) = q
� (�O) has maximum regret of P

2
. It remains to show that this holds for

statistical treatment rules (3.9) de�ned in part b of Proposition 3.2.
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For � = 2P � � (0), �M(�;P ) (X) = 1 jX > 0j, thus

q
�
�M(�;P ); �O

�
= �

�
�O

2P ��(0)

�
= q� (�O) and the rule minimizes maximum regret, which

equals P
2
.

For � < 2P � � (0), it is simplest to derive �M(�;P ) (X) using the following

construction2. Let �0 = 2P � � (0). De�ne an auxiliary random variable

Y � N
�
0; �20 � �2

�
,

independent of the observed outcome X � N (�O; �
2). Then X + Y � N (�O; �

2
0).

De�ne the statistical treatment rule ��M(�;P ) (X; Y ) as

��M(�;P ) (X;Y ) � 1 jX + Y > 0j ,

then clearly

q
�
��(�;P ); �O

�
= �

�
�O

2P � � (0)

�
= q� (�O) .

Integrating ��M(�;P ) (X; Y ) with respect to the distribution of Y yields

�M(�;P ) (X) � E (1 jX + Y > 0j) = 1� �
�
�
�
�20 � �2

��1=2
X
�
= �

��
�20 � �2

��1=2
X
�
,

which thus satis�es q
�
�M(�;P ); �O

�
= q� (�O) by construction and.minimizes maximum

regret, which equals P
2
. �

2This proof technique is similar to Schlag�s (2007) binomial average, in that both algebraically simplify
the problem by adding some noise to the observed outcomes.
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